Пропановая кислота водород. Карбоновые кислоты: физические свойства

Классификация

а) По основности (т. е. числукарбоксильных групп в молекуле):


Одноосновные (монокарбоновые) RCOOH; например:


СН 3 СН 2 СН 2 СООН;



НООС-СН 2 -СООН пропандиовая (малоновая) кислота



Трехосновные (трикарбоновые) R(COOH) 3 и т. д.


б) По строению углеводородного радикала:


Алифатические


предельные; например: СН 3 СН 2 СООН;


непредельные; например: СН 2 =СНСООН пропеновая(акриловая) кислота



Алициклические, например:



Ароматические, например:


Предельные монокарбоновые кислоты

(одноосновные насыщенные карбоновые кислоты) – карбоновые кислоты, в которых насыщенный углеводородный радикал соединен с одной карбоксильной группой -COOH. Все они имеют общую формулу C n H 2n+1 COOH (n ≥ 0); или CnH 2n O 2 (n≥1)

Номенклатура

Систематические названия одноосновных предельных карбоновых кислот даются по названию соответствующего алкана с добавлением суффикса - овая и слова кислота.


1. НСООН метановая (муравьиная) кислота


2. СН 3 СООН этановая (уксусная) кислота


3. СН 3 СН 2 СООН пропановая (пропионовая) кислота

Изомерия

Изомерия скелета в углеводородном радикале проявляется, начиная с бутановой кислоты, которая имеет два изомера:




Межклассовая изомерия проявляется, начиная с уксусной кислоты:


CH 3 -COOH уксусная кислота;


H-COO-CH 3 метилформиат (метиловый эфир муравьиной кислоты);


HO-CH 2 -COH гидроксиэтаналь (гидроксиуксусный альдегид);


HO-CHO-CH 2 гидроксиэтиленоксид.

Гомологический ряд

Тривиальное название

Название по ИЮПАК

Муравьиная кислота

Метановая кислота

Уксусная кислота

Этановая кислота

Пропионовая кислота

Пропановая кислота

Масляная кислота

Бутановая кислота

Валериановая кислота

Пентановая кислота

Капроновая кислота

Гексановая кислота

Энантовая кислота

Гептановая кислота

Каприловая кислота

Октановая кислота

Пеларгоновая кислота

Нонановая кислота

Каприновая кислота

Декановая кислота

Ундециловая кислота

Ундекановая кислота

Пальмитиновая кислота

Гексадекановая кислота

Стеариновая кислота

Октадекановая кислота

Кислотные остатки и кислотные радикалы

Кислотный остаток

Кислотный радикал (ацил)

НСООН
муравьиная


НСОО-
формиат


СН 3 СООН
уксусная

СН 3 СОО-
ацетат

СН 3 СН 2 СООН
пропионовая

СН 3 СН 2 СОО-
пропионат

СН 3 (СН 2) 2 СООН
масляная

СН 3 (СН 2) 2 СОО-
бутират

СН 3 (СН 2) 3 СООН
валериановая

СН 3 (СН 2) 3 СОО-
валериат

СН 3 (СН 2) 4 СООН
капроновая

СН 3 (СН 2) 4 СОО-
капронат

Электронное строение молекул карбоновых кислот


Показанное в формуле смещение электронной плотности в сторону карбонильного атома кислорода обусловливает сильную поляризацию связи О-Н, в результате чего облегчается отрыв атома водорода в виде протона - в водных растворах происходит процесс кислотной диссоциации:


RCOOH ↔ RCOO - + Н +


В карбоксилат-ионе (RCOO -) имеет место р, π-сопряжение неподеленной пары электронов атома кислорода гидроксильной группы с р-облаками, образующими π- связь, в результате происходит делокализация π- связи и равномерное распределение отрицательного заряда между двумя атомами кислорода:



В связи с этим для карбоновых кислот, в отличие от альдегидов, не характерны реакции присоединения.

Физические свойства


Температуры кипения кислот значительно выше температур кипения спиртов и альдегидов с тем же числом атомов углерода, что объясняется образованием циклических и линейных ассоциатов между молекулами кислот за счет водородных связей:


Химические свойства

I. Кислотные свойства

Сила кислот уменьшается в ряду:


НСООН → СН 3 СООН → C 2 H 6 COOH → ...

1. Реакции нейтрализации

СН 3 СООН + КОН → СН 3 СООК + н 2 O

2. Реакции с основными оксидами

2HCOOH + СаО → (НСОО) 2 Са + Н 2 O

3. Реакции с металлами

2СН 3 СН 2 СООН + 2Na → 2СН 3 СН 2 COONa + H 2

4. Реакции с солями более слабых кислот (в т. ч. с карбонатами и гидрокарбонатами)

2СН 3 СООН + Na 2 CO 3 → 2CH 3 COONa + CO 2 + Н 2 O


2НСООН + Mg(HCO 3) 2 → (НСОО) 2 Мg + 2СO 2 + 2Н 2 O


(НСООН + НСО 3 - → НСОО - + СO2 +Н2O)

5. Реакции с аммиаком

СН 3 СООН + NH 3 → CH 3 COONH 4

II. Замещение группы -ОН

1. Взаимодействие со спиртами (реакции этерификации)


2. Взаимодействие с NH 3 при нагревании (образуются амиды кислот)



Амиды кислот гидролизуются с образованием кислот:




или их солей:



3. Образование галогенангидридов

Наибольшее значение имеют хлорангидриды. Хлорирующие реагенты - PCl 3 , PCl 5 , тионилхлорид SOCl 2 .



4. Образование ангидридов кислот (межмолекулярная дегидратация)



Ангидриды кислот образуются также при взаимодействии хлорангидридов кислот с безводными солями карбоновых кислот; при этом можно получать смешанные ангидриды различных кислот; например:




III. Реакции замещения атомов водорода у α-углеродного атома



Особенности строения и свойств муравьиной кислоты

Строение молекулы


Молекула муравьиной кислоты, в отличие от других карбоновых кислот, содержит в своей структуре альдегидную группу.

Химические свойства

Муравьиная кислота вступает в реакции, характерные как для кислот, так и для альдегидов. Проявляя свойства альдегида, она легко окисляется до угольной кислоты:



В частности, НСООН окисляется аммиачным раствором Ag 2 O и гидроксидом меди (II) Сu(ОН) 2 , т. е. дает качественные реакции на альдегидную группу:




При нагревании с концентрированной H 2 SO 4 муравьиная кислота разлагается на оксид углерода (II) и воду:



Муравьиная кислота заметно сильнее других алифатических кислот, так как карбоксильная группа в ней связана с атомом водорода, а не с электроно-донорным алкильным радикалом.

Способы получения предельных монокарбоновых кислот

1. Окисление спиртов и альдегидов

Общая схема окисления спиртов и альдегидов:



В качестве окислителей используют KMnO 4 , K 2 Cr 2 O 7 , HNO 3 и другие реагенты.


Например:


5С 2 Н 5 ОН + 4KMnO 4 + 6H 2 S0 4 → 5СН 3 СООН + 2K 2 SO 4 + 4MnSO 4 + 11Н 2 O

2. Гидролиз сложных эфиров


3. Окислительное расщепление двойных и тройных связей в алкенах и в алкинах


Способы получения НСООН (специфические)

1. Взаимодействие оксида углерода (II) с гидроксидом натрия

СO + NaOH → HCOONa формиат натрия


2HCOONa + H 2 SO 4 → 2НСООН + Na 2 SO 4

2. Декарбоксилирование щавелевой кислоты


Способы получения СН 3 СООН (специфические)

1. Каталитическое окисление бутана


2. Синтез из ацетилена


3. Каталитическое карбонилирование метанола


4. Уксуснокислое брожение этанола


Так получают пищевую уксусную кислоту.

Получение высших карбоновых кислот

Гидролиз природных жиров


Непредельные монокарбоновые кислоты

Важнейшие представители

Общая формула алкеновых кислот: C n H 2n-1 COOH (n ≥ 2)


CH 2 =CH-COOH пропеновая (акриловая) кислота



Высшие непредельные кислоты

Радикалы этих кислот входят в состав растительных масел.


C 17 H 33 COOH - олеиновая кислота, или цис -октадиен-9-овая кислота


Транс -изомер олеиновой кислоты называется элаидиновой кислотой.


C 17 H 31 COOH - линолевая кислота, или цис, цис -октадиен-9,12-овая кислота




C 17 H 29 COOH - линоленовая кислота, или цис, цис, цис -октадекатриен-9,12,15-овая кислота

Кроме общих свойств карбоновых кислот, для непредельных кислот характерны реакции присоединения по кратным связям в углеводородном радикале. Так, непредельные кислоты, как и алкены, гидрируются и обесцвечивают бромную воду, например:



Отдельные представители дикарбоновых кислот

Предельные дикарбоновые кислоты HOOC-R-COOH


HOOC-CH 2 -COOH пропандиовая (малоновая) кислота, (соли и эфиры - малонаты)


HOOC-(CH 2) 2 -COOH бутадиовая (янтарная) кислота, (соли и эфиры - сукцинаты)


HOOC-(CH 2) 3 -COOH пентадиовая (глутаровая) кислота, (соли и эфиры - глутораты)


HOOC-(CH 2) 4 -COOH гексадиовая (адипиновая) кислота, (соли и эфиры - адипинаты)

Особенности химических свойств

Дикарбоновые кислоты во многом сходны с монокарбоновыми, однако являются более сильными. Например, щавелевая кислотасильнее уксусной почти в 200 раз.


Дикарбоновые кислоты ведут себя как двухосновные и образуют два ряда солей - кислые и средние:


HOOC-COOH + NaOH → HOOC-COONa + H 2 O


HOOC-COOH + 2NaOH → NaOOC-COONa + 2H 2 O


При нагревании щавелевая и малоновая кислоты легко декарбоксилируются:



Получение карбоновых кислот

I . В промышленности

1. Выделяют из природных продуктов

(жиров, восков, эфирных и растительных масел)

2. Окисление алканов:

2CH 4 + + 3O 2 t,kat → 2HCOOH + 2H 2 O

метанмуравьиная кислота

2CH 3 -CH 2 -CH 2 -CH 3 + 5O 2 t,kat,p →4CH 3 COOH + 2H 2 O

н-бутануксусная кислота

3. Окисление алкенов:

CH 2 =CH 2 + O 2 t,kat → CH 3 COOH

этилен

СH 3 -CH=CH 2 + 4[O] t,kat → CH 3 COOH + HCOOH (уксусная кислота+муравьиная кислота )

4. Окисление гомологов бензола (получение бензойной кислоты):

C 6 H 5 -C n H 2n+1 + 3n[O] KMnO4,H+ → C 6 H 5 -COOH + (n-1)CO 2 + nH 2 O

5C 6 H 5 -CH 3 + 6KMnO 4 + 9H 2 SO 4 → 5C 6 H 5 -COOH + 3K 2 SO 4 + 6MnSO 4 + 14H 2 O

толуолбензойная кислота

5.Получение муравьиной кислоты:

1 стадия: CO + NaOH t , p →HCOONa ( формиат натрия – соль )

2 стадия : HCOONa + H 2 SO 4 → HCOOH + NaHSO 4

6. Получение уксусной кислоты:

CH 3 OH + CO t,p →CH 3 COOH

Метанол

II . В лаборатории

1. Гидролиз сложных эфиров:

2. Из солей карбоновых кислот :

R-COONa + HCl → R-COOH + NaCl

3. Растворением ангидридов карбоновых кислот в воде:

(R-CO) 2 O + H 2 O → 2 R-COOH

4. Щелочной гидролиз галоген производных карбоновых кислот:

III . Общие способы получения карбоновых кислот

1. Окисление альдегидов:

R-COH + [O] → R-COOH

Например, реакция «Серебряного зеркала» или окисление гидроксидом меди (II ) – качественные реакции альдегидов

2. Окисление спиртов:

R-CH 2 -OH + 2[O] t,kat → R-COOH + H 2 O

3. Гидролиз галогензамещённых углеводородов, содержащих три атома галогена у одного атома углерода.

4. Из цианидов (нитрилов) – способ позволяет наращивать углеродную цепь:

СH 3 -Br + Na-C≡N → CH 3 -CN + NaBr

CH 3 -CN - метилцианид (нитрил уксусной кислоты)

СH 3 -CN + 2H 2 O t → CH 3 COONH 4

ацетат аммония

CH 3 COONH 4 + HCl → CH 3 COOH + NH 4 Cl

5. Использование реактива Гриньяра

R-MgBr + CO 2 →R-COO-MgBr H2O → R-COOH + Mg(OH)Br

ПРИМЕНЕНИЕ КАРБОНОВЫХ КИСЛОТ

Муравьиная кислота – в медицине - муравьиный спирт (1,25% спиртовой раствор муравьиной кислоты), в пчеловодстве, в органическом синтезе, при получении растворителей и консервантов; в качестве сильного восстановителя.

Уксусная кислота – в пищевой и химической промышленности (производство ацетилцеллюлозы, из которой получают ацетатное волокно, органическое стекло, киноплёнку; для синтеза красителей, медикаментов и сложных эфиров). В домашнем хозяйстве как вкусовое и консервирующее вещество.

Масляная кислота – для получения ароматизирующих добавок, пластификаторов и флотореагентов.

Щавелевая кислота – в металлургической промышленности (удаление окалины).

Стеариновая C 17 H 35 COOH и пальмитиновая кислота C 15 H 31 COOH – в качестве поверхностно-активных веществ, смазочных материалов в металлообработке.

Олеиновая кислота C 17 H 33 COOH – флотореагент и собиратель при обогащении руд цветных металлов.

Отдельные представители

одноосновных предельных карбоновых кислот

Муравьиная кислота впервые была выделена в XVII веке из красных лесных муравьев. Содержится также в соке жгучей крапивы. Безводная муравьиная кислота – бесцветная жидкость с острым запахом и жгучим вкусом, вызывающая ожоги на коже. Применяется в текстильной промышленности в качестве протравы при крашении тканей, для дубления кож, а также для различных синтезов.
Уксусная кислота широко распространена в природе – содержится в выделениях животных (моче, желчи, испражнениях), в растениях (в зеленых листьях). Образуется при брожении, гниении, скисании вина, пива, содержится в кислом молоке и сыре. Температура плавления безводной уксусной кислоты + 16,5°C, кристаллы ее прозрачны как лед, поэтому ее называют ледяной уксусной кислотой. Впервые получена в конце XVIII века русским ученым Т. Е. Ловицем. Натуральный уксус содержит около 5% уксусной кислоты. Из него приготовляют уксусную эссенцию, используемую в пищевой промышленности для консервирования овощей, грибов, рыбы. Уксусная кислота широко используется в химической промышленности для различных синтезов.

Представители ароматических и непредельных карбоновых кислот

Бензойная кислота C 6 H 5 COOH - наиболее важный представитель ароматических кислот. Распространена в природе в растительном мире: в бальзамах, ладане, эфирных маслах. В животных организмах она содержится в продуктах распада белковых веществ. Это кристаллическое вещество, температура плавления 122°C, легко возгоняется. В холодной воде растворяется плохо. Хорошо растворяется в спирте и эфире.

Ненасыщенные непредельные кислоты с одной двойной связью в молекуле имеют общую формулу C n H 2 n -1 COOH .

Высокомолекулярные непредельные кислоты часто упоминаются диетологами (они называют их ненасыщенными). Самая распространенная из них – олеиновая СН 3 –(СН 2) 7 –СН=СН–(СН 2) 7 –СООН или C 17 H 33 COOH . Она представляет собой бесцветную жидкость, затвердевающую на холоде.
Особенно важны полиненасыщенные кислоты с несколькими двойными связями: линолевая СН 3 –(СН 2) 4 –(СН=СН–СН 2) 2 –(СН 2) 6 –СООН или C 17 H 31 COOH с двумя двойными связями, линоленовая СН 3 –СН 2 –(СН=СН–СН 2) 3 –(СН 2) 6 –СООН или C 17 H 29 COOH с тремя двойными связями и арахидоновая СН 3 –(СН 2) 4 –(СН=СН–СН 2) 4 –(СН 2) 2 –СООН с четырьмя двойными связями; их часто называют незаменимыми жирными кислотами. Именно эти кислоты обладают наибольшей биологической активностью: они участвуют в переносе и обмене холестерина, синтезе простагландинов и других жизненно важных веществ, поддерживают структуру клеточных мембран, необходимы для работы зрительного аппарата и нервной системы, влияют на иммунитет. Отсутствие в пище этих кислот тормозит рост животных, угнетает их репродуктивную функцию, вызывает различные заболевания. Линолевую и линоленовую кислоты организм человека сам синтезировать не может и должен получать их готовыми с пищей (как витамины). Для синтеза же арахидоновой кислоты в организме необходима линолевая кислота. Полиненасыщенные жирные кислоты с 18 атомами углерода в виде эфиров глицерина находятся в так называемых высыхающих маслах – льняном, конопляном, маковом и др. Линолевая кислота C 17 H 31 COOH и линоленовая кислота C 17 H 29 COOH входят в состав растительных масел. Например, льняное масло содержит около 25% линолевой кислоты и до 58% линоленовой.

Сорбиновая (2,4-гексадиеновая) кислота СН 3 –СН=СН–СН=СНСООН была получена из ягод рябины (на латыни – sorbus). Эта кислота – прекрасный консервант, поэтому ягоды рябины не плесневеют.

Простейшая непредельная кислота, акриловая СН 2 =СНСООН, имеет острый запах (на латыни acris – острый, едкий). Акрилаты (эфиры акриловой кислоты) используются для получения органического стекла, а ее нитрил (акрилонитрил) – для изготовления синтетических волокон.

Называя вновь выделенные кислоты, химики, нередко, дают волю фантазии. Так, название ближайшего гомолога акриловой кислоты, кротоновой

СН 3 –СН=СН–СООН, происходит вовсе не от крота, а от растения Croton tiglium , из масла которого она была выделена. Очень важен синтетический изомер кротоновой кислоты – метакриловая кислота СН 2 =С(СН 3)–СООН, из эфира которой (метилметакрилата), как и из метилакрилата, делают прозрачную пластмассу – оргстекло.

Непредельные карбоновые кислоты способны к реакциям при­соединения:

СН 2 =СН-СООН + Н 2 → СН 3 -СН 2 -СООН

СН 2 =СН-СООН + Сl 2 → СН 2 Сl -СНСl -СООН

ВИДЕО:

СН 2 =СН-СООН + HCl → СН 2 Сl -СН 2 -СООН

СН 2 =СН-СООН + Н 2 O → НО-СН 2 -СН 2 -СООН

Две последние реакции протекают против правила Марковникова.

Непредельные карбоновые кислоты и их производные способ­ны к реакциям полимеризации.

Практически у всех дома есть уксус. И большинство людей знают, что его основу составляет Но что она представляет собой с химической точки зрения? Какие еще этого ряда существуют и каковы их характеристики? Попробуем разобраться в этом вопросе и изучить предельные одноосновные карбоновые кислоты. Тем более что в быту применяется не только уксусная, но и некоторые другие, а уж производные этих кислот вообще частые гости в каждом доме.

Класс карбоновых кислот: общая характеристика

С точки зрения науки химии, к данному классу соединений относят кислородсодержащие молекулы, которые имеют особенную группировку атомов - карбоксильную функциональную группу. Она имеет вид -СООН. Таким образом, общая формула, которую имеют все предельные одноосновные карбоновые кислоты, выглядит так: R-COOH, где R - это частица-радикал, которая может включать любое количество атомов углерода.

Согласно этому, определение данному классу соединений можно дать такое. Карбоновые кислоты - это органические кислородсодержащие молекулы, в состав которых входит одна или несколько функциональных группировок -СООН - карбоксильные группы.

То, что данные вещества относятся именно к кислотам, объясняется подвижностью атома водорода в карбоксиле. Электронная плотность распределяется неравномерно, так как кислород - самый электроотрицательный в группе. От этого связь О-Н сильно поляризуется, и атом водорода становится крайне уязвимым. Он легко отщепляется, вступая в химические взаимодействия. Поэтому кислоты в соответствующих индикаторах дают подобную реакцию:


Благодаря атому водорода, карбоновые кислоты проявляют окислительные свойства. Однако наличие других атомов позволяет им восстанавливаться, участвовать во многих других взаимодействиях.

Классификация

Можно выделить несколько основных признаков, по которым делят на группы карбоновые кислоты. Первый из них - это природа радикала. По этому фактору выделяют:

  • Алициклические кислоты. Пример: хинная.
  • Ароматические. Пример: бензойная.
  • Алифатические. Пример: уксусная, акриловая, щавелевая и прочие.
  • Гетероциклические. Пример: никотиновая.

Если говорить о связях в молекуле, то также можно выделить две группы кислот:


Также признаком классификации может служить количество функциональных групп. Так, выделяют следующие категории.

  1. Одноосновные - только одна -СООН-группа. Пример: муравьиная, стеариновая, бутановая, валериановая и прочие.
  2. Двухосновные - соответственно, две группы -СООН. Пример: щавелевая, малоновая и другие.
  3. Многоосновные - лимонная, молочная и прочие.

История открытия

Виноделие процветало с самой древности. А, как известно, один из его продуктов - уксусная кислота. Поэтому история известности данного класса соединений берет свои корни еще со времен Роберта Бойля и Иоганна Глаубера. Однако при этом химическую природу этих молекул выяснить долгое время не удавалось.

Ведь долгое время господствовали взгляды виталистов, которые отрицали возможность образования органики без живых существ. Но уже в 1670 году Д. Рэй сумел получить самого первого представителя - метановую или муравьиную кислоту. Сделал он это, нагревая в колбе живых муравьев.

Позже работы ученых Берцелиуса и Кольбе показали возможность синтеза этих соединений из неорганических веществ (перегонкой древесного угля). В результате была получена уксусная. Таким образом были изучены карбоновые кислоты (физические свойства, строение) и положено начало для открытия всех остальных представителей ряда алифатических соединений.

Физические свойства

Сегодня подробно изучены все их представители. Для каждого из них можно найти характеристику по всем параметрам, включая применение в промышленности и нахождение в природе. Мы рассмотрим, что собой представляют карбоновые кислоты, их и другие параметры.

Итак, можно выделить несколько основных характерных параметров.

  1. Если число атомов углерода в цепи не превышает пяти, то это резко пахнущие, подвижные и летучие жидкости. Выше пяти - тяжелые маслянистые вещества, еще больше - твердые, парафинообразные.
  2. Плотность первых двух представителей превышает единицу. Все остальные легче воды.
  3. Температура кипения: чем больше цепь, тем выше показатель. Чем более разветвленная структура, тем ниже.
  4. Температура плавления: зависит от четности количества атомов углерода в цепи. У четных она выше, у нечетных ниже.
  5. В воде растворяются очень хорошо.
  6. Способны образовывать прочные водородные связи.

Такие особенности объясняются симметрией строения, а значит, и строением кристаллической решетки, ее прочностью. Чем более простые и структурированные молекулы, тем выше показатели, которые дают карбоновые кислоты. Физические свойства данных соединений позволяют определять области и способы использования их в промышленности.

Химические свойства

Как мы уже обозначали выше, данные кислоты могут проявлять свойства разные. Реакции с их участием важны для промышленного синтеза многих соединений. Обозначим самые главные химические свойства, которые может проявлять одноосновная карбоновая кислота.

  1. Диссоциация: R-COOH = RCOO - + H + .
  2. Проявляет то есть взаимодействует с основными оксидами, а также их гидроксидами. С простыми металлами взаимодействует по стандартной схеме (то есть только с теми, что стоят до водорода в ряду напряжений).
  3. С более сильными кислотами (неорганические) ведет себя как основание.
  4. Способна восстанавливаться до первичного спирта.
  5. Особая реакция - этерификации. Это взаимодействие со спиртами с образованием сложного продукта - эфира.
  6. Реакция декарбоксилирования, то есть отщепления от соединения молекулы углекислого газа.
  7. Способна взаимодействовать с галогенидами таких элементов, как фосфор и сера.

Очевидно, насколько многогранны карбоновые кислоты. Физические свойства, как и химические, достаточно разнообразны. Кроме того, следует сказать, что в целом по силе как кислоты все органические молекулы достаточно слабы по сравнению со своими неорганическими коллегами. Их константы диссоциации не превышают показателя 4,8.

Способы получения

Существует несколько основных способов, которыми можно получать предельные карбоновые кислоты.

1. В лаборатории это делают окислением:

  • спиртов;
  • альдегидов;
  • алкинов;
  • алкилбензолов;
  • деструкцией алкенов.

2. Гидролиз:

  • сложных эфиров;
  • нитрилов;
  • амидов;
  • тригалогеналканов.

4. В промышленности синтез осуществляют окислением углеводородов с большим числом атомов углерода в цепи. Процесс осуществляется в несколько стадий с выходом множества побочных продуктов.

5. Некоторые отдельные кислоты (муравьиная, уксусная, масляная, валериановая и прочие) получают специфическими способами, используя природные ингредиенты.

Основные соединения предельных карбоновых кислот: соли

Соли карбоновых кислот - важные соединения, используемые в промышленности. Они получаются в результате взаимодействия последних с:

  • металлами;
  • основными оксидами;
  • щелочами;
  • амфотерными гидроксидами.

Особенно важное значение среди них имеют те, что образуются между щелочными металлами натрием и калием и высшими предельными кислотами - пальмитиновой, стеариновой. Ведь продукты подобного взаимодействия - мыла, жидкие и твердые.

Мыла

Так, если речь идет о подобной реакции: 2C 17 H 35 -COOH + 2Na = 2C 17 H 35 COONa + H 2 ,

то образующийся продукт - стеарат натрия - это есть по своей природе обычное хозяйственное мыло, используемое для стирки белья.

Если заменить кислоту на пальмитиновую, а металл на калий, то получится пальмитат калия - жидкое мыло для мытья рук. Поэтому можно с уверенностью заявлять, что соли карбоновых кислот - это на самом деле важные соединения органической природы. Их промышленное производство и использование просто колоссально в своих масштабах. Если представить, сколько мыла тратит каждый человек на Земле, то несложно вообразить и эти масштабы.

Эфиры карбоновых кислот

Особая группа соединений, которая имеет свое место в классификации органических веществ. Это класс Образуются они при реакции карбоновых кислот со спиртами. Название таких взаимодействий - реакции этерификации. Общий вид можно представить уравнением:

R , -COOH + R"-OH = R , -COOR" + H 2 O.

Продукт с двумя радикалами и есть сложный эфир. Очевидно, что в результате реакции карбоновая кислота, спирт, сложный эфир и вода претерпели значительные изменения. Так, водород от молекулы кислоты уходит в виде катиона и встречается с гидроксо-группой, отщепившейся от спирта. В итоге формируется молекула воды. Группировка, оставшаяся от кислоты, присоединяет к себе радикал от спирта, образуя молекулу сложного эфира.

Чем же так важны эти реакции и в чем промышленное значение их продуктов? Все дело в том, что сложные эфиры используются, как:

  • пищевые добавки;
  • ароматические добавки;
  • составной компонент парфюма;
  • растворители;
  • компоненты лаков, красок, пластмасс;
  • медикаментов и прочее.

Понятно, что области их использования достаточно широки, чтобы оправдать объемы производства в промышленности.

Этановая кислота (уксусная)

Это предельная одноосновная карбоновая кислота алифатического ряда, которая является одной из самых распространенных по объемам производства во всем мире. Формула ее - СН 3 СООН. Такой распространенности она обязана своим свойствам. Ведь области ее использования крайне широки.

  1. Она является пищевой добавкой под кодом Е-260.
  2. Используется в пищевой промышленности для консервации.
  3. Применяется в медицине для синтеза лекарственных средств.
  4. Компонент при получении душистых соединений.
  5. Растворитель.
  6. Участник процесса книгопечатания, крашения тканей.
  7. Необходимый компонент в реакциях химических синтезов множества веществ.

В быту ее 80-процентный раствор принято называть уксусной эссенцией, а если разбавить его до 15%, то получится просто уксус. Чистая 100% кислота называется ледяной уксусной.

Муравьиная кислота

Самый первый и простой представитель данного класса. Формула - НСООН. Также является пищевой добавкой под кодом Е-236. Ее природные источники:

  • муравьи и пчелы;
  • крапива;
  • хвоя;
  • фрукты.

Основные области использования:

Также в хирургии растворы данной кислоты используют как антисептические средства.

КАРБОНОВЫЕ КИСЛОТЫ

Карбоновыми кислотами называют производные углеводородов, содержащие одну или несколько карбоксильных групп.

Число карбоксильных групп характеризует основность кислоты.

В зависимости от количества карбоксильных групп карбоновые кислоты подразделяются на одноосновные карбоновые кислоты (содержат одну карбоксильную группу), двухосновные (содержат две карбоксильные группы) и многоосновные кислоты.

В зависимости от вида радикала, связанного с карбоксильной группой, карбоновые кислоты делятся на предельные, непредельные и ароматические. Предельные и непредельные кислоты объединяют под общим названием кислоты алифатического или жирного ряда.

    Одноосновные карбоновые кислоты

1.1 Гомологический ряд и номенклатура

Гомо­логический ряд одноосновных предельных карбоновых кислот (иногда их называют жирными кислотами) начинается с муравьиной кислоты

Формула гомологического ряда

Номенклатура ИЮПАК разрешает сохранять для многих кислот их тривиальные названия, которые обычно указывают на природный источник, из которого была выделена та или иная кислота, например, муравьиная, уксусная, масляная, валериановая и т.д.

Для более сложных случаев названия кислот производят от названия уг­леводородов с тем же числом атомов углерода, что и в молеку­ле кислоты, с добавлением окончания -овая и слова кислота. Муравьиная кислота Н-СООН называется метановой кисло­той, уксусная кислота СН 3 -СООН - этановой кислотой и т. д.

Таким образом, кислоты рассматриваются как производные углеводородов, одно звено которых превращено в карбоксил:

При составлении названий кислот с разветвленной цепью по рациональной номенклатуре их рассматривают как производные уксусной кислоты, в молекуле которой атомы водорода замещены радикалами, например, триметилуксусная кислота (СН 3) 3 С – СООН.

1.2 Физические свойства карбоновых кислот

Только с чисто формальных позиций можно рассматривать карбоксильную группу как комбинацию карбонильной и гидроксильной функций. Фактически их взаимное влияние друг на друга таково, что полностью изменяет их свойства.

Обычная для карбонила поляризация двойной связи С=0 сильно возрастает за счет дополнительного стягивания свобод­ной электронной пары с соседнего атома кислорода гидроксильной группы:

Следствием этого является значительное ослабление связи О-Н в гидроксиле и легкость отщепления атома водорода от него в виде протона (Н +). Появление пониженной электронной плотности (δ+) на центральном углеродном атоме карбоксила приводит также к стягиванию σ-электронов соседней связи С-С к карбоксильной группе и появлению (как у альдегидов и кетонов) пониженной электронной плотности (δ +) на α-углеродном атоме кислоты.

Все карбоновые кислоты обладают кислой реакцией (обна­руживается индикаторами) и образуют соли с гидроксидами, оксидами и карбонатами металлов и с активными метал­лами:

Карбоновые кислоты в большинстве случаев в водном растворе диссоциированы лишь в малой степени и являются слабыми кислотами, значительно уступая таким кислотам, как соляная, азотная и серная. Так, при растворении одного моля в 16 л воды степень диссоциации муравьиной кислоты равна 0,06, уксусной кислоты - 0,0167, в то время как соля­ная кислота при таком разбавлении диссоциирована почти полностью.

Для большинства одноосновных карбоновых кислот рК а = 4,8, только муравьиная кислота имеет меньшую величи­ну рК а (около 3,7), что объясняется отсутствием электронодонорного эффекта алкильных групп.

В безводных минеральных кислотах карбоновые кислоты протонируются по кислороду с образованием карбкатионов:

Сдвиг электронной плотности в молекуле недиссоцииро­ванной карбоновой кислоты, о котором говорилось выше, по­нижает электронную плотность на гидроксильном атоме кис­лорода и повышает ее на карбонильном. Этот сдвиг еще боль­ше увеличивается в анионе кислоты:

Результатом сдвига является полное выравнивание заря­дов в анионе, который фактически существует в форме А - резонанс карбоксилат-аниона.

Первые четыре представителя ряда карбоновых кислот - подвижные жидкости, смешивающиеся с водой во всех отно­шениях. Кислоты, в молекуле которых содержится от пяти до девяти атомов углерода (а также изомасляная кислота), - маслянистые жидкости, растворимость их в воде невелика.

Высшие кислоты (от С 10) - твердые тела, практически не­растворимы в воде, при перегонке в обычных условиях они разлагаются.

Муравьиная, уксусная и пропионовая кислоты имеют ост­рый запах; средние члены ряда обладают неприятным запа­хом, высшие кислоты запаха не имеют.

На физических свойствах карбоновых кислот сказывается значительная степень ассоциации вследствие образования во­дородных связей. Кислоты образуют прочные водород­ные связи, так как связи О-Н в них сильно поляризованы. Кроме того, карбоновые кислоты спо­собны образовывать водородные связи с участием атома кисло­рода карбонильного диполя, обладающего значительной электроотрицательностью. Действительно, в твердом и жидком со­стоянии карбоновые кислоты существуют в основном в виде циклических димеров:

Такие димерные структуры сохраняются в некоторой степе­ни даже в газообразном состоянии и в разбавленных растворах в неполярных растворителях.

      Химические свойства

Для кислот характерны три типа реакций: замещения иона водорода карбоксильной группы (образование солей); с участием гидроксильной группы (образование сложных эфиров, галогенангидридов, ангидридов кислот); замещения водорода в радикале.

Образование солей. Карбоновые кислоты легко образуют соли при взаимодействии с взаимодействии с металлами, их оксидами, со щелочами или основаниями, при действии аммиака или аминов:

Соли карбоновых кислот находят широкое применение в народном хозяйстве. Они используются в качестве катализаторов, стабилизаторов полимерных материалов, при изготовлении красок и т.д.

Образование сложных эфиров. Со спиртами кислоты дают сложные эфиры:

Образование галогенангидридов. При действии на кислоты галогенидов фосфора или SОС1 2 получаются галогенангидриды кислот:

Галогенангидриды – очень реакционноспособные вещества, которые применяются для разнообразных синтезов.

Образование ангидридов кислот. Если от двух молекул карбоновых кислот отнять одну молекулу воды (в присутствии водоотнимающих веществ Р 2 О 5 и др.), образуется ангидрид карбоновой кислоты:

Ангидриды кислот, подобно галогенангидридам, очень реакци-онноснособны; они разлагаются различными соединениями с активным водородом, образуя производные кислоты и свобод­ную кислоту:

Галогенирование карбоновых кислот. Водородные атомы углеводо­родных радикалов в кислотах по реакционной способности по­добны атомам водорода в алканах. Исключение составляют атомы водорода, расположенные у α-углеродного атома (непо­средственно связанного с карбоксилом). Так, при действии хлора и брома в присутствии переносчиков галогенов (РС1 3 , 1 2 и др.) на карбоновые кислоты или на их хлорангидриды проис­ходит замещение именно α -водородных атомов:

Действие окислителей. Одноосновные карбоновые кис­лоты, как правило, устойчивы к действию окислителей. Легко окисляются лишь муравьиная кислота (до СО 2 и Н 2 О) и кисло­ты с третичным атомом углерода в α -положении. При окисле­нии последних получаются α -оксикислоты:

В животных организмах одноосновные карбоновые кисло­ты также способны окисляться, причем атом кислорода на­правляется всегда в β-положение. Так, например, в организме больных диабетом масляная кислота переходит в β -оксимасляную кислоту:

Образование кетонов Сухая пе­регонка кальциевых и бариевых солей карбоновых кислот (кроме муравьиной кислоты) приводит к образованию кетонов. Так, при перегонке ацетата кальция, полученного из СаСО 3 и СН 3 СООН, образуется диметилкетон, при перегонке пропионовокислого кальция - диэтилкетон:

Образование амидов. При нагревании аммониевых солей кислот по­лучаются амиды:

Образование углеводородов. При сплавле­нии солей щелочных металлов карбоновых кислот со щелоча­ми (пиролиз) происходит расщепление углеродной цепи и декарбоксилирование, в результате чего из углеводородного радикала кис­лоты образуется соответствующий углеводород, например:

Важнейшие представители

Муравьиная кислота - бесцветная жидкость с резким запа­хом. Является сильным восстановителем и окисляется до уголь­ной кислоты. В природе свободная муравьиная кислота встреча­ется в выделениях муравьев, в соке крапивы, в поте животных. Применяют муравьиную кислоту при крашении тканей в качестве восстановителя, при дублении кож, в медицине, в различных органических синтезах.

Уксусная кислота - бесцветная жидкость с резким запахом. Водный раствор (70 - 80 %) уксусной кислоты называется уксусной эссенцией, а 3 -5%-ный водный раствор - столовым уксу­сом.

Уксусная кислота широко встречается в природе. Она содер­жится в моче, поте, желчи и коже животных, растениях. Образуется при уксуснокислом брожении жидкостей, содержащих спирт (вино, пиво и др.).

Широко используется в химической промышленности для производства ацетатного шелка, красителей, сложных эфиров, ацетона, уксусного ангидрида, солей и т.д. В пищевой промыш­ленности уксусная кислота используется для консервирования продуктов, некоторые сложные эфиры уксусной кислоты приме­няются в кондитерском производстве.

Масляная кислота представляет собой жидкость с неприят­ным запахом. Содержится в виде сложного эфира в коровьем масле. В свободном состоянии находится в прогоркшем масле.

2. Двухосновные карбоновые кислоты

Общая формула гомологического ряда предельных двухосновных кислот

Примерами могут служить:

Предельные двухосновные кислоты - твердые кристалли­ческие вещества. Подобно тому, как это отмечалось для одноосновных кислот, предельные двухосновные кислоты с четным числом атомов углерода плавятся при более высокой темпера­туре, чем соседние гомологи с нечетным числом атомов углерода. Растворимость в воде кислот с нечетным числом атомов угле­рода значительно выше растворимости кислот с четным чис­лом атомов углерода, причем с возрастанием длины цепи рас­творимость кислот в воде уменьшается.

Двухосновные кислоты диссоциируют последовательно:

Они сильнее соответствующих одноосновных кислот. Сте­пень диссоциации двухосновных кислот понижается с увели­чением их молекулярной массы.

В молекуле двухосновных кислот содержатся две карбок­сильные группы, поэтому они дают два ряда производных, на­пример средние и кислые соли, средние и кислые сложные эфиры:

При нагревании щавелевой и малоновой кислот легко от­щепляется СО 2:

Двухосновные кислоты с четырьмя и пятью атомами угле­рода в молекуле, т. е. янтарная и глутаровая кислоты, при на­гревании отщепляют элементы воды и дают внутренние цик­лические ангидриды:

3. Непредельные карбоновые кислоты

Состав непредельных одноосновных кислот с одной двой­ной связью можно выразить общей формулой С n Н 2 n -1 СООН. Как и для любых бифункциональных соединений, для них ха­рактерны реакции как кислот, так и олефинов. α.β-Непредельные кислоты несколько превосходят по силе соответст­вующие жирные кислоты, так как двойная связь, находящая­ся рядом с карбоксильной группой, усиливает ее кислотные свойства.

Акриловая кислота. Простейшая непредельная одноосновная кислота

Олеиновая, линолевая и линоленовая кислоты.

Олеиновая кислота С 17 Н 33 СООН в виде глицеринового эфира чрезвычайно распространена в природе. Ее строение выража­ется формулой

Олеиновая кислота - бесцветная маслянистая жидкость, легче воды, на холоду затвердевает в игольчатые кристаллы, плавящиеся при 14 °С. На воздухе она быстро окисляется и желтеет.

Молекула олеиновой кислоты способна присоединять два атома галогена:

В присутствии катализаторов, например Ni, олеиновая кислота присоединяет два атома водорода, переходя в стеари­новую кислоту.

Олеиновая кислота представляет собой цис-изомер (все природные непредельные высокомолекулярные кислоты, как правило, относятся к цис-ряду).

Линолевая С 17 Н 31 СООН и линоленовая С 17 Н 29 СООН кисло­ты еще более ненасыщены, чем олеиновая кислота. В виде сложных эфиров с глицерином - глицеридов - они являются главной составной частью льняного и конопляного масел:

В молекуле линолевой кислоты две двойные связи. Она может присоединять четыре атома водорода или галогена. В молекуле линолевой кислоты три двойные связи, поэтому она присоединяет шесть атомов водорода или галогена. Обе кислоты, присоединяя водород, переходят в стеариновую кис­лоту.

Сорбиновая кислота

Она имеет две сопряженные друг с другом и с карбоксильной группой двойные связи, имеющие транс-конфигурацию; является пре­красным консервантом для многих пищевых продуктов: овощ­ных консервов, сыра, маргарина, фруктов, рыбных и мясных продуктов.

Малеиновая и фумаровая кислоты. Простейшими из двухосновных кислот, содержащих этиленовую связь, являют­ся два структурных изомера:

Кроме того, для второй из этих кислот возможны две про­странственные конфигурации:

Фумаровая кислота содержится во многих растениях: осо­бенно часто она встречается в грибах. Малеиновая кислота в природе не найдена.

Обе кислоты обычно получают при нагревании яблочной (оксиянтарной) кислоты:

При медленном, осторожном нагревании получается главным образом фумаровая кислота; при более сильном нагревании и при перегонке яблочной кислоты получается малеиновая кис­лота.

Как фумаровая, так и малеиновая кислота при восстанов­лении дают одну и ту же янтарную кислоту.

Карбоновые кислоты. Непредельные (ненасыщенные) карбоновые кислоты - соединения, в углеводородном радикале которых имеются кратные связи. В зависимости от их числа и природы различают: 1) алкеновые карболовые кислоты с общей формулой C*H2*-iCOOH, имеющие одну двойную связь; 2) алкадиеновые карбоновые кислоты с общей формулой СяНгя-зСООН, имеющие две двойные связи; 3) алкатриеновые карбоновые кислоты с общей формулой СяНгл-зСООН, имеющие три двойные связи; 4) алкиновые карбоновые кислоты с общей формулой ОД^-эСООН, имеющие одну тройную связь. Способ получения. 1. Окисление непредельных альдегидов: акролеин акриловая кислота 2. Дегидрогалогенирование галогенкарбоновых кислот: СН2-СН2-СН2-СООН + 2КОН - сн2=сн-сн2-соок+2И2о+ка 3. Дегидратация р-оксикислот: Физические свойства. Ненасыщенные карбоновые кислоты с числом атомов углерода 10 и более, имеющие ^^-конфигурацию, в отличие от предельных карбоновых кислот при обычных условиях являются жидкостями. 7/?а«оизомеры непредельных карбоновых кислот с любым числом атомов углерода являются кристаллическими веществами. . В табл. 29.3 указаны физические свойства некоторых представителей непредельных карбоновых кислот. Таблица 29.3. Физические свойства некоторых представителей непредельных карбоновых кислот Название кислоты Формула Температура плавления, °С Температура дпвниж, °С Акриловая С2Н3-СООН 12,1 140,9 Пропиоловая С2Н - СООН 17,6 144 Кро тоновая (тране- из ом ер) С3Н5-СООН 71,4-71,7 185 Название кислоты Формул» Температура плавления, °С Температура X) Изокро тоновая (tfuc- изомер) С3Н5-СООН 15,5 169 Олеиновая (цис-изомер) С17Н33СООН 13,4 228/15 Эландиновая (транс-изомер) С17Н33СООН 44 234/15 Линолевая Ci7H3iCOOH -5 149Д Линоленовая C,7H29COOH -11,3 184/4 Последние четыре кислоты кипят при низких давлениях (указаны в мм рт. ст. через дробь). Химические свойства. Наличие в углеводородном радикале двойных и тройных связей влияет на силу карбоновых кислот. Если у пропионовой кислоты константа диссоциации К- = 1,34 Ю, то у акриловой кислоты она приблизительно в 4 раза больше (#=5,6* 10"5), а у пропиоловой кислоты она больше в тысячу раз (К= 1,35 ИГ1). Наличие кратных связей в молекулах непредельных карбоновых кислот обусловливает их способность вступать в реакции присоединения и полимеризации и особенности протекания реакций окисления. 1. Реакции присоединения: 2. Реакции полимеризации: соон соон 3. Реакции окисления: а) при осторожном окислении образуются диоксикислоты акриловая диоксипропноновая кислота кислота б) при энергичном окислении происходит разрыв молекулы по месту кратной связи с образованием смеси одноосновной и двухосновной кислот: СНз-СН«СН-СООН гротоповая кислота СН эСООН+НООС - СООН уксусная щавелевая кислота кислота [О} Отдельные представители. Акриловая (пропеновая) кислота СН2=СН - СООН представляет собой жидкость с резким запахом, смешивается с водой во всех отношениях. Широко используется для получения различных полимеров. Олеиновая кислота С8Н,7СН=СН - (СН^-СООН содержится в виде глидеридов в большинстве растительных масел и животных жиров, получается их гидролизом, представляет собой бесцветную маслянистую жидкость, легко окисляющуюся на воздухе, растворимую в органических растворителях и несме-шивающуюся с водой. Используется для производства парфюмерных и косметических средств, пеноочистителей, смачивателей и пластификаторов. Линолевая кислота СН3 - (СН2)3 - (СН2 - СН - СН)2 - (СН2)7 -- СООН. Содержится в виде глицеридов в растительных маслах, получается их гидролизом, представляет собой светло-желтую жидкость, хорошо растворимую в органических растворителях и нерастворимую в воде. Легко окисляется и полимеризуется на воздухе. Линоленовая кислота - маслянистая жидкость светло-желтого цвета, нерастворимая в воде и хорошо растворимая в органических растворителях. Содержится в виде глицеридов в растительных маслах и получается в результате их гидролиза. Легко окисляется и полимеризуется. Линолевая и линоленовая кислоты в организме человека и животных не синтезируются, но необходимы для жизнедеятельности, в организм поступают с пищей, поэтому они относятся к так называемым незаменимым жирным кислотам.