Чем звезды отличаются от планет: подробности и интересные моменты. Формирование и эволюция солнечной системы

Содержание статьи:

Небесные тела - это объекты, расположенные в Наблюдаемой Вселенной. Такими объектами могут являться естественные физические тела или их ассоциации. Все они характеризуются обособленностью, а также представляют собой единую структуру, связанную гравитацией или электромагнетизмом. Изучением данной категории занимается астрономия. В этой статье предлагается к вниманию классификация небесных тел Солнечной системы, а также описание их основных характеристик.

Классификация небесных тел Солнечной системы

Каждое небесное тело имеет особые характеристики, например, способ зарождения, химический состав, размеры и др. Это дает возможность классифицировать объекты, объединяя их в группы. Опишем, какие есть небесные тела в Солнечной системе: звезды, планеты, спутники, астероиды, кометы и др.

Классификация небесных тел Солнечной системы по составу:

  • Силикатные небесные тела . Данная группа небесных тел именуется силикатной, т.к. основным компонентом всех ее представителей являются каменно-металлические породы (около 99% от всей массы тела). Силикатная составляющая представлена такими тугоплавкими веществами, как кремний, кальций, железо, алюминий, магний, сера и др. Присутствуют также ледяные и газовые компоненты (вода, лед, азот, углекислота, кислород, гелий водород), однако их содержание мизерное. К этой категории относятся 4 планеты (Венера, Меркурий, Земля и Марс), спутники (Луна, Ио, Европа, Тритон, Фобос, Деймос, Амальтея, др), более миллиона астероидов, обращающихся между орбитами двух планет - Юпитера и Марса (Паллада, Гигея, Веста, Церера и др.). Показатель плотности - от 3 грамм на кубический сантиметр и более.
  • Ледяные небесные тела . Эта группа является самой многочисленной в Солнечной системе. Основная составляющая - ледяная компонента (углекислота, азот, водяной лед, кислород, аммиак, метан и др.). В меньшем количестве присутствует силикатная компонента, а объем газовой крайне незначительный. Эта группа включает одну планету Плутон, крупные спутники (Ганимед, Титан, Каллисто, Харон и др.), а также все кометы.
  • Комбинированные небесные тела . Составу представителей данной группы присуще наличие в больших количествах всех трех компонент, т.е. силикатной, газовой и ледяной. К небесным телам с комбинированным составом относится Солнце и планеты-гиганты (Нептун, Сатурн, Юпитер и Уран). Эти объекты характеризуются быстрым вращением.

Характеристика звезды Солнце


Солнце является звездой, т.е. представляет собой скопление газа с невероятными объемами. Имеет собственную гравитацию (взаимодействие, характеризующееся притяжением), с помощью которой и удерживаются все его компоненты. Внутри любой звезды, а значит, и внутри Солнца, происходят реакции термоядерного синтеза, продуктом которых является колоссальная энергия.

Солнце имеет ядро, вокруг которого образовывается зона излучения, где происходит перенос энергии. Далее следует зона конвекции, в которой зарождаются магнитные поля и движения солнечного вещества. Видимая часть Солнца может быть названа поверхностью этой звезды только условно. Более правильная формулировка - фотосфера или сфера света.

Притяжение внутри Солнца настолько велико, что фотон из его ядра на то, чтобы добраться до поверхности звезды, затрачивает сотни тысяч лет. При этом его путь от поверхности Солнца до Земли составляет всего 8 минут. Плотность и размеры Солнца позволяют притягивать другие объекты Солнечной системы. Ускорение свободного падения (силы тяжести) в поверхностной зоне равно почти 28 м/с 2 .

Характеристика небесного тела звезды Солнце имеет следующий вид:

  1. Химический состав. Основные компоненты Солнца - это гелий и водород. Естественно, звезда включает и другие элементы, однако их удельный вес очень мизерный.
  2. Температура. Значение температуры существенно различается в разных зонах, так, в ядре она достигает 15.000.000 градусов Цельсия, а на видимой части - 5.500 градусов Цельсия.
  3. Плотность. Составляет 1,409 г/см 3 . Самая большая плотность отмечена в ядре, наименьшая - на поверхности.
  4. Масса. Если описывать массу Солнца без математических сокращений, то число будет выглядеть, как 1.988.920.000.000.000.000.000.000.000.000 кг.
  5. Объем. Полное значение - 1.412.000.000.000.000.000.000.000.000.000 кубических килограмм.
  6. Диаметр. Этот показатель составляет 1391000 км.
  7. Радиус. Радиус звезды Солнце - 695500 км.
  8. Орбита небесного тела. Солнце имеет собственную орбиту, которая пролегает вокруг центра Млечного пути. Полный оборот занимает 226 миллионов лет. Расчеты ученых показали, что скорость движения невероятно высока - почти 782000 километров в час.

Характеристика планет Солнечной системы


Планеты - это небесные тела, которые вращаются по орбите вокруг звезды или же ее остатков. Большой вес позволяет планетам под воздействием собственной гравитации становиться округлыми. Однако размеры и вес недостаточны для начала термоядерных реакций. Разберем более подробно характеристики планет на примерах некоторых представителей этой категории, входящих в состав Солнечной системы.

Марс занимает второе место по изученности среди планет. Является 4-й по удаленности от Солнца. Его размеры позволяют занимать 7 место в рейтинге самых объемных небесных тел Солнечной системы. Марс имеет внутреннее ядро, окруженное внешним жидким ядром. Далее располагается силикатная мантия планеты. А после промежуточного слоя идет кора, имеющая разную толщину в различных участках небесного тела.

Рассмотрим детальнее характеристики Марса:

  • Химический состав небесного тела. Основными элементами, из которых состоит Марс, являются железо, сера, силикаты, базальт, оксид железа.
  • Температура. Средний показатель - -50°C.
  • Плотность - 3,94 г/см 3 .
  • Масса - 641.850.000.000.000.000.000.000 кг.
  • Объем - 163.180.000.000 км 3 .
  • Диаметр - 6780 км.
  • Радиус - 3390 км.
  • Ускорение силы тяжести - 3,711 м/с 2 .
  • Орбита. Пролегает вокруг Солнца. Имеет округлую траекторию, далекую от идеала, т.к. в разное время расстояние небесного тела от центра Солнечной системы имеет разные показатели - 206 и 249 млн. км.
Плутон относится к категории карликовых планет. Имеет каменистое ядро. Некоторые исследователи допускают, что оно сформировано не только из каменных пород, но также может включать лед. Его покрывает заледенелая мантия. На поверхности находится замороженная вода и метан. Атмосфера предположительно включает метан и азот.

Плутон отличается такими характеристиками:

  1. Состав. Основные составляющие - камень и лед.
  2. Температура. Средний показатель температуры на Плутоне - -229 градусов Цельсия.
  3. Плотность - около 2 г на 1 см 3 .
  4. Масса небесного тела - 13.105.000.000.000.000.000.000 кг.
  5. Объем - 7.150.000.000 км 3 .
  6. Диаметр - 2374 км.
  7. Радиус - 1187 км.
  8. Ускорение силы тяжести - 0,62 м/с 2 .
  9. Орбита. Планета обращается вокруг Солнца, однако орбита характеризуется эксцентричностью, т.е. в один период она удаляется до 7,4 млрд. км, в другой - приближается до 4,4 млрд. км. Орбитальная скорость небесного тела достигает 4,6691 км/с.
Уран - планета, которую открыли с помощью телескопа в 1781 году. Она обладает системой колец и магнитосферой. Внутри Урана находится ядро, состоящее из металлов и кремния. Оно окружено водой, метаном и аммиаком. Далее следует слой жидкого водорода. На поверхности находится газовая атмосфера.

Основные характеристики Урана:

  • Химический состав. Эта планета состоит из комбинации химических элементов. В большом количестве включает кремний, металлы, воду, метан, аммиак, водород, др.
  • Температура небесного тела. Средняя температура - -224°С.
  • Плотность - 1,3 г/см 3 .
  • Масса - 86.832.000.000.000.000.000.000 кг.
  • Объем - 68.340.000.000 км 3 .
  • Диаметр - 50724 км.
  • Радиус - 25362 км.
  • Ускорение силы тяжести - 8,69 м/с 2 .
  • Орбита. Центром, вокруг которого вращается Уран, также является Солнце. Орбита слегка вытянута. Орбитальная скорость составляет 6,81 км/с.

Характеристики спутников небесных тел


Спутник - это объект, находящийся в Видимой Вселенной, который обращается не вокруг звезды, а вокруг другого небесного тела под влиянием его гравитации и по определенной траектории. Опишем некоторые спутники и характеристики этих космических небесных тел.

Деймос - спутник Марса, который считается одним их самых маленьких, описывается так:

  1. Форма - похож на трехосный эллипсоид.
  2. Размеры - 15х12,2х10,4 км.
  3. Масса - 1.480.000.000.000.000 кг.
  4. Плотность - 1,47 г/см 3 .
  5. Состав. В состав спутника в основном входят каменистые породы, реголит. Атмосфера отсутствует.
  6. Ускорение силы тяжести - 0,004 м/с 2 .
  7. Температура - -40°С.
Каллисто - это один из многочисленных спутников Юпитера. Он является вторым по величине в категории спутников и занимает первое место среди небесных тел по количеству кратеров на поверхности.

Характеристики Каллисто:

  • Форма - округлая.
  • Диаметр - 4820 км.
  • Масса - 107.600.000.000.000.000.000.000 кг.
  • Плотность - 1,834 г/см 3 .
  • Состав - диоксид углерода, молекулярный кислород.
  • Ускорение силы тяжести - 1,24 м/с 2 .
  • Температура - -139,2°С.
Оберон или Уран IV - естественный спутник Урана. Является 9-м по величине в Солнечной системе. У него отсутствует магнитное поле и атмосфера. На поверхности обнаружены многочисленные кратеры, поэтому некоторые ученые считают его довольно старым спутником.

Рассмотрим характеристики Оберона:

  1. Форма - округлая.
  2. Диаметр - 1523 км.
  3. Масса - 3.014.000.000.000.000.000.000 кг.
  4. Плотность - 1,63 г/см 3 .
  5. Состав - камень, лед, органика.
  6. Ускорение силы тяжести - 0,35 м/с 2 .
  7. Температура - -198°С.

Характеристика астероидов в Солнечной системе


Астероиды - большие каменные глыбы. В основном располагаются в астероидном поясе между орбитами Юпитера и Марса. Могут выходить из своих орбит по направлению к Земле и Солнцу.

Ярким представителем этого класса является Гигея - один из крупнейших астероидов. Это небесное тело располагается в главном астероидном поясе. Увидеть его можно даже в бинокль, но не всегда. Он хорошо различим в период перигелия, т.е. в тот момент, когда астероид находится в самой ближней к Солнцу точке орбиты. Имеет тусклую темную поверхность.

Основные характеристики Гигеи:

  • Диаметр - 4 07 км.
  • Плотность - 2,56 г/см 3 .
  • Масса - 90.300.000.000.000.000.000 кг.
  • Ускорение силы тяжести - 0,15 м/с 2 .
  • Орбитальная скорость. Среднее значение - 16,75 км/с.
Астероид Матильда находится в главном поясе. Обладает достаточно низкой скоростью вращения вокруг своей оси: 1 оборот происходит за 17,5 земных суток. В ее состав входит множество углеродных соединений. Изучение этого астероида производилось с помощью космического аппарата. Самый большой кратер на Матильде имеет протяженность в 20 км.

Основные характеристики Матильды таковы:

  1. Диаметр - почти 53 км.
  2. Плотность - 1,3 г/см 3 .
  3. Масса - 103.300.000.000.000.000 кг.
  4. Ускорение силы тяжести - 0,01 м/с 2 .
  5. Орбита. Матильда проходит полный оборот по орбите за 1572 земных суток.
Веста является представителем крупнейших астероидов главного астероидного пояса. Ее можно наблюдать без использования телескопа, т.е. невооруженным взглядом, т.к. поверхность этого астероида достаточно яркая. Если бы форма Весты была более округлой и симметричной, то ее можно было бы отнести к карликовым планетам.

У этого астероида имеется железно-никелевое ядро, покрытое каменной мантией. Протяженность самого большого кратера на Весте составляет 460 км, а глубина - 13 км.

Перечислим основные физические характеристики Весты:

  • Диаметр - 525 км.
  • Масса. Значение находится в пределах 260.000.000.000.000.000.000 кг.
  • Плотность - порядка 3,46 г/см 3 .
  • Ускорение свободного падения - 0,22 м/с 2 .
  • Орбитальная скорость. Показатель средней орбитальной скорости равен 19,35 км/с. Один оборот вокруг оси Веста проходит за 5,3 часа.

Характеристика комет Солнечной системы


Комета - это небесное тело, имеющее небольшие размеры. Орбиты комет проходят вокруг Солнца и имеют вытянутую форму. Эти объекты, сближаясь с Солнцем, образуют след, состоящий из газа и пыли. Иногда он остается в форме комы, т.е. облака, которое тянется на огромное расстояние - от 100000 до 1,4 млн. км от ядра кометы. В других случаях след остается в форме хвоста, длина которого может достигать 20 млн. км.

Галлея - небесное тело группы комет, известное человечеству еще с древних времен, т.к. ее можно увидеть невооруженным взглядом.

Характеристики Галлеи:

  1. Масса. Приблизительно равна 220.000.000.000.000 кг.
  2. Плотность - 600 кг/м 3 .
  3. Период обращения вокруг Солнца - менее 200 лет. Сближение со звездой происходит приблизительно через 75-76 лет.
  4. Состав - замерзшая вода, металл и силикаты.
Комета Хейла-Боппа была наблюдаема человечеством в течение почти 18 месяцев, это говорит о ее долгопериодичности. Она также носит название «Большая комета 1997 года». Отличительной особенностью данной кометы является наличие у нее хвостов 3-х видов. Наряду с газовым и пылевым хвостами за ней тянется натриевый, длина которого достигает 50 млн. км.

Состав кометы: дейтерий (тяжелая вода), органические соединения (муравьиная, уксусная кислота и др.), аргон, крипто и др. Период обращения вокруг Солнца - 2534 года. Достоверных данных о физических характеристиках этой кометы нет.

Комета Темпеля славится тем, что является первой кометой, на поверхность которой был доставлен зонд с Земли.

Характеристика кометы Темпеля:

  • Масса - в пределах 79.000.000.000.000 кг.
  • Размеры. Длина - 7,6 км, ширина - 4,9 км.
  • Состав. Вода, углекислый газ, органические соединения и др.
  • Орбита. Меняется при прохождении кометы вблизи Юпитера, постепенно сокращаясь. Последние данные: один оборот вокруг Солнца составляет 5,52 года.


За годы изучения Солнечной системы учеными было собрано немало интересных фактов о небесных телах. Рассмотрим те из них, которые зависят от химических и физических характеристик:
  • Самым большим небесным телом по массе и диаметру является Солнце, на втором месте Юпитер, а на третьем - Сатурн.
  • Наибольшая гравитация присуща Солнцу, второе место занимает - Юпитер, а третье - Нептун.
  • Гравитация Юпитера способствует активному притяжению космического мусора. Ее уровень настолько велик, что планета способна вытягивать мусор с орбиты Земли.
  • Самым жарким небесным телом Солнечной системы является именно Солнце - это ни для кого не секрет. А вот следующий показатель в 480 градусов Цельсия зафиксирован на Венере - второй по удаленности от центра планете. Было бы логичным предположить, что второе место должно быть у Меркурия, орбита которого проходит ближе к Солнцу, но на самом деле показатель температуры там более низкий - 430°С. Это связано с наличием у Венеры и отсутствием у Меркурия атмосферы, которая способна удерживать тепло.
  • Самой холодной планетой считается Уран.
  • На вопрос, плотность какого небесного тела наибольшая в рамках Солнечной системы, ответ прост - плотность Земли. На втором месте находится Меркурий, а на третьем - Венера.
  • Траектория орбиты Меркурия обеспечивает длительность дня на планете, равную 58 земным суткам. Длительность одного дня на Венере равна 243 земным суткам, при этом год длится всего 225.
Смотрите видео о небесных телах Солнечной системы:


Изучение характеристик небесных тел позволяет человечеству делать интересные открытия, обосновывать те или иные закономерности, а также расширять общие знания о Вселенной.

Посмотрите на ночное небо, и вы увидите некоторые планеты нашей Солнечной системы, а еще тысячи звезд, которых во Вселенной миллиард миллионов... и ещё больше!

Вселенная состоит из множества галактик, в которых находятся мириады самых разных звезд и объектов вселенной - это галактики и созвездия, туманности и звездные скопления, самые разные звезды и их планетарные системы. Среди них в галактике Млечный путь есть планета, возможно, единственная на которой есть разумная жизнь.

Это Наш дом - планета Земля.

Дом, в котором мы живем - это планета Земля. Наша планета вращается вокруг Солнца и входит в Солнечную систему вместе с другими планетами. Всего в Солнечной системе девять планет, многие из которых имеют свои спутники и кольца. В нашей Солнечной системе можно встретить и кометы, и астероиды и,даже, целые их скопления. Каждый объект Солнечной системы по своему интересен и уникален, и только на одном из них, на нашей планете Земля, есть жизнь.
В раздел...

Созвездия звёздного небо

Тысячи лет назад астрономы, наблюдая за движением звёзд на небе и проводя очертания между ними, наделяли их названиями созвездий, связанные с мифами и легендами. И сейчас, как и тысячилетия назад, каждое время года даёт возможность разглядеть знакомые нам созвездия и звёзды ночного неба. В течение всего годового цикла звезды меняют своё положения относительно нас и только полярная звезда остается вот уже добрых полтора тысячелетия практически неподвижным маяком северного полюса Земли.
В раздел...

Звёзды и галактики

Наша галактика, в которую входит Солнечная система, называется Млечный путь и она огромна по размерам (1 квинтиллион километров и сотни тысяч световых лет), но есть и другие ближайшие, по меркам вселенной, и далекие галактики. Также, как и в нашей галактике, в них находятся самые различные звезды, туманности, рассеянные и шаровые скопления звезд, черные дыры, белые и красные карлики, а также много-много других загадочных объектов вселенной.
В раздел...

Человек и космос

Еще с древних времен человек стремился познать тайну звездного неба. Он изобрел телескоп, запустил спутник, затем человек сам вышел в открытый космос, научился вычислять расстояния и массы, находить самые удаленные на сотни тысяч световых лет звезды в самых далеких уголках вселенной, но многое из уже открытых человеком объектов космоса, по прежнему остается загадкой и тайной самых глубинных недр вселенной.
В раздел...

Наша галактика, в которой мы живем называется Млечный путь. В ней находится Солнечная система, состоящая из Солнца и девяти планет, вращающихся вокруг него. Третья планета по счету от Солнца - это наша планета Земля. И вот с этой планеты мы и начали свое первооткрывание огромной непостижимой вселенной.

Многие самые далекие объекты вселенной уже известны науке, а многие и, возможно, еще больше остаются загадкой. При том, что вселенная постоянно расширяется, многие ее чудеса приходится раскрывать бесконечно.

Ни одна из большого числа различных моделей происхождения и развития Солнечной системы не удостоилась перевода в ранг общепризнанной теории.

Согласно гипотезе Канта – Лапласа система планет вокруг Солнца образовалась в результате действия сил притяжения и отталкивания между частицами рассеянной материи, находящейся во вращательном движении вокруг Солнца.

Впервые английский физик и астрофизик Дж. Х. Джинс (1877 - 1946) предположил, что когда-то Солнце столкнулось с другой звездой, в результате чего из него была вырвана струя газа, которая, сгущаясь, превратилась в планеты. Учитывая огромное расстояние между звездами, такое столкновение кажется невероятным.

Из современных гипотез происхождения Солнечной системы наиболее известна электромагнитная гипотеза шведского астрофизика Х. Альфвена (1908 - 1995) и английского Ф. Хойла (1915 - 2001). Согласно этой теории первоначальное газовое облако, из которого образовались и Солнце и планеты, состояло из ионизированного газа, подверженного влиянию электромагнитных сил. После того, как из огромного газового облака посредством концентрации образовалось Солнце, на очень большом расстоянии от него остались небольшие части этого облака. Гравитационная сила стала притягивать остатки газа к образовавшейся звезде – Солнцу, но его магнитное поле остановило движущийся газ на различных расстояниях – как раз там, где находятся планеты. Гравитационные и магнитные силы повлияли на концентрацию и сгущение этого газа. В результате образовались планеты. Когда возникли самые крупные планеты, тот же процесс повторился в меньших масштабах, создав, таким образом, системы спутников.

Известна также гипотеза образования Солнечной системы из холодного газопылевого облака, окружающего Солнце, предложенная советским ученым О.Ю. Шмидтом (1891 - 1956).

Согласно общепринятой в настоящее время гипотезе, формирование Солнечной системы началось около 4,6 млрд. лет назад с гравитационного коллапса небольшой части гигантского межзвездного газопылевого облака. Это начальное облако было, вероятно, размером в несколько световых лет и являлось прародителеи для нескольких звезд.

В процессе гравитационного сжатия размеры газопылевого облака уменьшились и, в силу закона сохранения углового момента, росла скорость вращения облака. Центр, где собралась большая часть массы, становился все более и более горячим, чем окружающий диск. Из-за вращения скорости сжатия облака параллельно и перпендикулярно оси вращения различались, что привело к уплощению облака и формированию характерного протопланетного диска с диаметром примерно 200 а.е. и горячей, плотной протозвезды в центре. Полагают, что в этой точке эволюции Солнце было звездой типа Т Тельца. Изучение таких звезд показывает, что они часто сопровождаются протопланетными дисками с массами 0,001 – 0,1 солнечной массы, с подавляющим процентом массы туманности, сосредоточенным непосредственно в звезде. Планеты сформировались аккрецией из этого диска (рис.27).


В течение 50 млн лет давление и плотность водорода в центре протозвезды стали достаточно большими для начала термоядерных реакций. Температура, скорость реакции, давление и плотность увеличились, пока не было достигнуто гидростатическое равновесие, с тепловой энергией, противостоящей силе гравитационного сжатия. На этом этапе Солнце стало полноценной звездой главной последовательности.


Рис.27 Эволюция Солнца

Солнечная система просуществует, пока Солнце не начнет развиваться вне главной последовательности диаграммы Герцшпрунга – Рассела, которая показывает зависимость между яркостью звезд и температурой их поверхности. Более горячие звезды являются более яркими.

Солнце сжигает запасы водородного топлива, при этом выделяющаяся энергия, имеет тенденцию к исчерпанию, заставляя Солнце сжиматься. Это увеличивает давление в его недрах и нагревает ядро, таким образом ускоряя сжигание топлива. В результате Солнце становится ярче на примерно десять процентов каждые 1,1 млрд лет.

Через приблизительно 5 - 6 млрд. лет, водород в ядре Солнца будет полностью преобразован в гелий, что завершит фазу главной последовательности. В это время внешние слои Солнца расширятся примерно в 260 раз – Солнце станет красным гигантом. Из-за чрезвычайно увеличивающейся площади поверхности, она будет гораздо более прохладной, чем при нахождении на главной последовательности (2600 К).

В конечном счете, внешние слои Солнца будут выброшены мощным взрывом в окружающее пространство, образовав планетарную туманность, в центре которой останется лишь небольшое звездное ядро – белый карлик, необычно плотный объект в половину первоначальной массы Солнца, но размером с Землю. Эта туманность возвратит часть материала, который сформировал Солнце, в межзвездную среду.

Теории происхождения Солнечной системы носят гипотетический характер, и однозначно решить вопрос об их достоверности на современном этапе развития науки невозможно. Во всех существующих теориях имеются противоречия и неясные места.

Отсутствие общепризнанной версии происхождения планетной системы имеет свое объяснение. Прежде всего, единственность объекта наблюдения исключает применение сравнительного анализа и заставляет решать нелегкую задачу восстановления истории на основании одних только знаний о сегодняшнем состоянии Солнечной системы. Например, представления об эволюции звезд от их рождения до гибели получены благодаря накоплению и статистической обработке наблюдаемых данных о современном состоянии множества звезд разных классов, находящихся на разных стадиях развития. Неудивительно, что о развитии далеких от нас звезд астрономия знает существенно больше, чем о происхождении и развитии места нашего обитания – Солнечной системы.

Таким образом, солнечная система – очень сложное природное образование, сочетающее разнообразие составляющих ее элементов с высочайшей устойчивостью системы как целого. При огромном числе и разнообразии составляющих систему элементов, при тех сложных взаимоотношениях, которые устанавливаются между ними, задача определения механизма ее образования, оказывается очень непростой.

В Солнечную систему входят:

· Солнце;

· 4 планеты земной группы: Меркурий, Венера, Земля, Марс и их спутники;

· пояс малых планет – астероидов, куда входит планета – карлик Церера;

· бесчисленное число метеоритных тел, движущихся как роями, так и одиночно.

· 4 планеты – гиганты: Юпитер, Сатурн, Уран, Нептун и их спутники;

· сотни комет;

· кентавры;

· транснептуновые объекты: пояс Койпера, куда входят 4 планеты – карлика: Плутон, Хаумеа, Макемаке, Эрида и рассеянный диск;

· Отдаленные области, куда входит облако Оорта и Седна;

· Пограничные области.

Солнце

Солнце относится к рядовым звездам нашей Галактики и представляет собой раскаленный газовый (плазменный) шар преимущественно гелиево- водородного состава, который разбавлен примесью (около 1%) остальных химических элементов, соотношение которых изменяется от поверхности к ядру. В верхних слоях Солнца водорода содержится около 90 %, а гелия – 10 %. В ядре содержится лишь 37 % водорода. Соотношение между водородом и гелием с течением времени изменяется в пользу гелия, поскольку уже в течение 4,5 млрд. лет на Солнце протекают термоядерные реакции, превращающие ядра водорода в ядра гелия. Ежесекундно около 600 млн. т водорода превращаются в гелий при температуре около 15 млн. 0 С. При этом 4,3 млн. т переходит в лучистую энергию (рис.28).

Безжизненный космос вовсе не пустынен. Он объединяет в себе огромную массу всяческих тел разной природы, размеров и с разным названием. Среди них - метеоры, метеориты, кометы, болиды, планеты и звезды. Причем каждая из категорий космических тел внутри себя делится еще и на виды, разницу между которыми зачастую может понять только астроном со стажем. Попробуем пока разобраться в основополагающих принципах, например, в том, чем звезды отличаются от планет.

Главное отличие

Самое первое, основное и не подлежащее сомнению различие - способность светиться. Любая звезда обязательно испускает свет, планета же этим свойством не обладает. Конечно, близлежащие планеты тоже выглядят светящимися пятнышками - красноречивым примером может служить Венера. Но это не ее собственное свечение, она всего лишь «зеркало», в котором отражается свет истинного источника - Солнца.

Кстати, это очень хороший способ того, как отличить планету от звезды чисто визуально, без дополнительных оптических приборов. Если светящаяся точка на ночном небосклоне «подмигивает», то есть мерцает, - будьте уверены, это звезда. Если исходящий от небесного объекта свет ровный и постоянный - значит, отражает свет ближайшего светила. И это самый первый и явный признак, показывающий нам, чем звезды отличаются от планет.

Второе отличие, вытекающее из первого

Способность излучать свет свойственна только очень горячим поверхностям. Как пример можно рассмотреть металл, который сам по себе не светится. Но если его нагреть до нужной температуры, металлический предмет раскаляется и излучает пусть и слабый, но свет.

Так что второе, чем звезды отличаются от планет, - очень высокая температура этих космических тел. Именно это позволяет звездам светиться. Даже на поверхности самого холодного светила температура не опускается ниже 2000 градусов К. Обычно звездные температуры измеряются в Кельвинах, в отличие от привычного нам Цельсия.

Наше Солнце намного горячее, в разные периоды его поверхность нагревается до 5000, а то и 6000 К. То есть «по-нашему» это будет 4726.85 - 5726.85 °C, что тоже впечатляет.

Необходимое уточнение

Указанные температуры характерны только для звездных поверхностей. Еще чем звезды отличаются от планет, так это тем, что внутри они гораздо более горячие, чем снаружи. Даже поверхностные температуры на некоторых звездах достигают 6000 К, а в центре светил предположительно они зашкаливают за миллионы градусов Цельсия! Пока что нет ни возможностей, ни необходимой техники, ни даже формулы расчетов, с помощью которых можно было бы определить внутреннюю «градусность» звезд.

Размеры и движение

Размеры звезд и планет отличаются так же грандиозно. По сравнению с небесными «фонарями» планеты - просто песчинки. Причем это касается и веса (массы), и объема. Если вместо Солнца поставить посреди свободного пространства яблоко средних размеров, то для обозначения положения Земли понадобится горошинка, отнесенная на сотни метров. Сравнение и звезд показывает, что объемы вторых в тысячи, а то и миллионы раз превышают тот объем в космосе, которое занимают первые. С массой немого другие соотношения. Дело в том, что все планеты - твердые тела. А звезды в основном газообразны, иначе которыми и обеспечиваются заоблачно высокие температуры светил, были бы попросту невозможны.

А чем отличается планета от звезды еще? Планета по определению имеет траекторию движения, называемую орбитой. И она обязательно окружает звезду как более весомое Звезда же неподвижна на небосклоне. Если набраться терпения и несколько ночей следить за определенным участком неба, движение планеты можно заметить даже слабо вооруженным глазом (но хотя бы без любительского телескопа обойтись не получится).

Дополнительные признаки

Размеры звезд и планет не определить на глазок. Но некоторые отличия, которые точно характеризуют требуют еще более специфического оборудования. Так, химический состав, который доступно определить по точно скажет, планета или звезда перед нами. Ведь светила - это газообразные гиганты, следовательно, они состоят из легких элементов. А планеты включают в себя в основном твердые составляющие.

Косвенным признаком может быть наличие спутника (а то и нескольких). Они имеются только у планет. Однако если спутника не наблюдается, это вовсе не означает, что перед нами однозначно звезда - некоторые планеты неплохо обходятся и без таких «соседей».

У астрономов есть еще один признак определения того, планета ли только что обнаруженное космическое тело. Орбита, по которой оно движется, не должна содержать посторонних объектов, грубо говоря, мусора. Спутники таковым не считаются, они достаточно крупного размера, иначе бы упали на поверхность. Такое правило принято достаточно недавно - в 2006 году. Благодаря ему Эрида, Церера и - внимание! - Плутон теперь считаются не полноправными, а

Астрономические расчеты

Научные работники отличаются повышенной любознательностью. Прекрасно зная, чем звезды отличаются от планет, они, тем не менее, полюбопытствовали, что произойдет, когда массивность планеты превзойдет, например, размеры Солнца. Оказалось, что такое повышение размеров планеты приведет к резкому возрастанию давления в ядре космического тела; далее температура достигнет миллиона (или нескольких) градусов; начнутся ядерные и термоядерные реакции - и вместо планеты мы получим новорожденную звезду.