Генетическая инженерия презентация. Презентация на тему "генная инженерия"

Деева Нелли - 11 класс, МАОУ Ильинская СОШ г.о. Домодедово

Презентация подготовлена в рамках изучаемого вопроса "Новые достижения в биотехнологии"

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Метод генной и клеточной инженерии Выполнила ученица 11 класса Деева Нелли Учитель Надежда Борисовна Лобова

Клеточная инженерия – область биотехнологии, основанная на культивировании клеток и тканей на питательных средах. Клеточная инженерия

В середине XIX столетия Теодор Шванн сформулировал клеточную теорию (1838). Он обобщил имевшиеся знания о клетке и показал, что клетка представляет основную единицу строения всех живых организмов, что клетки животных и растений сходны по своему строению. Т. Шванн внес в науку правильное понимание клетки как самостоятельной единицы жизни, наименьшей единицы живого: вне клетки нет жизни.

Выращиваемые на искусственных питательных средах клетки и ткани растений составляют основу разнообразных технологий в сельском хозяйстве. Одни из них направлены на получение идентичных исходной форме растений. Другие - на создание растений, генетически отличных от исходных, путем или облегчения и ускорения традиционного селекционного процесса или создания генетического разнообразия и поиска и отбора генотипов с ценными признаками. Улучшение растений и животных на основе клеточных технологий

Генетическое улучшение животных связано с разработкой технологии трансплантации эмбрионов и методов микро-манипуляций с ними (получение однояйцевых близнецов, межвидовые пересадки эмбрионов и получение химерных животных, клонирование животных при пересадке ядер эмбриональных клеток в энуклеированные, т. е. с удаленным ядром, яйцеклетки). В 1996 шотландским ученым из Эдинбурга впервые удалось получить овцу из энуклеированной яйцеклетки, в которую было пересажено ядро соматической клетки (вымени) взрослого животного.

Генная инженерия основана на получении гибридных молекул ДНК и введении этих молекул в клетки других организмов, а также на молекулярно-биологических, иммунохимических и биохимических методах. Генная инженерия

Генная инженерия начала развиваться с 1973 года, когда американские исследователи Стэнли Коэн и Энли Чанг встроили бактериальную плазмиду в ДНК лягушки. Затем эту трансформированную плазмиду вернули в клетку бактерии, которая стала синтезировать белки лягушки, а также передавать лягушачью ДНК своим потомкам. Таким образом был найден метод, позволяющий встраивать чужеродные гены в геном определенного организма.

Генная инженерия находит широкое практическое применение в отраслях народного хозяйства, таких как микробиологическая промышленность, фармакологическая промышленность, пищевая промышленность и сельское хозяйство.

Улучшение растений и животных на основе клеточных технологий Выведены невиданные раньше сорта картофеля, кукурузы, сои, риса, рапса, огурцов. Количество видов растений, к которым успешно применены методы генной инженерии, превышает цифру 50. Трансгенные плоды имеют более длительный срок созревания, чем обычные культуры. Этот фактор прекрасно сказывается при транспортировке, когда не надо бояться, что продукт перезреет. Генная инженерия может скрещивать помидоры с картошкой, огурцы с луком, виноград с арбузами – возможности здесь просто потрясающие. Размеры и аппетитный свежий вид полученного продукта могут приятно удивить любого.

Животноводство также находится в зоне интересов генной инженерии. Исследования по созданию трансгенных овец, свиней, коров, кроликов, уток, гусей, кур считаются в наши дни приоритетными. Здесь большое внимание уделяется именно животным, которые могли бы синтезировать лекарственные препараты: инсулин, гормоны, интерферон, аминокислоты. Так генетически модифицированные коровы и козы могли бы давать молоко, в котором содержались бы необходимые составляющие для лечения такого страшного заболевания, как гемофилия. Не надо сбрасывать со счетов и борьбу с опасными вирусами. Генетически устойчивая к различным заразным заболеваниям живность уже существует и очень комфортно чувствует себя в окружающей среде. Но самое наверное перспективное в генной инженерии – это клонирование животных. Под этим термином понимается (в узком смысле этого слова) копирование клеток, генов, антител и многоклеточных организмов в лабораторных условиях. Такие экземпляры генетически одинаковы. Наследственная изменчивость возможна только в случае случайных мутаций или, если создана искусственно.

Примеры генной инженерии

Н апример, компания « Lifestyle Pets » создала с помощью генной инженерии гипоаллергенного кота, названного Ашера ГД. В организм животного был введен некий ген, позволявший «обходить заболевания стороной». Ашера

Г ибридная порода кошек. Выведена в США в 2006 году, на основе генов африканского сервала, азиатской леопардовой кошки и обычной домашней кошки. Самая крупная из домашних кошек, может достигать веса 14 кг и в длину 1 метра. Одна из самых дорогих пород кошек (цена котёнка $22000 - 28000). Покладистый характер и собачья преданность

В 2007 году южнокорейский ученый изменил ДНК кота, чтобы заставить его светиться в темноте, а затем взял эту ДНК и клонировал из нее других котов, создав целую группу пушистых флуоресцирующих кошачьих. И вот, как он это сделал: исследователь взял кожные клетки мужских особей турецкой ангоры и, используя вирус, ввел генетические инструкции по производству красного флуоресцентного белка. Затем он поместил генетически измененные ядра в яйцеклетки для клонирования, и эмбрионы были имплантированы назад донорским котам, что сделало их суррогатными матерями для собственных клонов. Светящиеся в темноте коты

Генетически модифицированный лосось компании « AquaBounty » растет в два раза быстрее, чем обычная рыба этого вида. На фото показаны два лосося одного возраста. В компании говорят, что рыба имеет тот же вкус, строение ткани, цвет и запах, как и обычный лосось; однако все еще идут споры о ее съедобности. Генетически созданный атлантический лосось имеет дополнительный гормон роста от чавычи, который позволяет рыбе производить гормон роста круглый год. Ученым удалось сохранить активность гормона при помощи гена, взятого у схожей на угря рыбы под названием «американская бельдюга» и действующего как «включатель» для гормона. Быстрорастущий лосось

Ученые Вашингтонского университета работают над созданием тополей, которые могут очищать загрязненные места при помощи впитывания через корневую систему загрязняющих веществ, содержащихся в подземных водах. После этого растения разлагают загрязнители на безвредные побочные продукты, которые впитываются корнями, стволом и листьями или высвобождаются в воздух. Борющиеся с загрязнениями растения

Слайд 1

Биотехнологии Генная инженерия

Слайд 2

Биотехнология – это интеграция естественных и инженерных наук, позволяющая наиболее полно реализовать возможности живых организмов для производства продуктов питания, лекарственных препаратов, для решения проблем в области энергетики и охраны окружающей среды.

Слайд 3

Одним из видов биотехнологий является генная инженерия. Генная инженерия основана на получении гибридных молекул ДНК и введении этих молекул в клетки других организмов, а также на молекулярно-биологических, иммунохимических и бмохимических методах.

Слайд 4

Генная инженерия начала развиваться с 1973 года, когда американские исследователи Стэнли Коэн и Энли Чанг встроили бартериальную плазмиду в ДНК лягушки. Затем эту трансформированную плазмиду вернули в клетку бактерии, которая стала синтезировать белки лягушки, а также передавать лягушачью ДНК своим потомкам. Таким образом был найден метод, позволяющий встраивать чужеродные гены в геном определенного организма.

Слайд 5

Генная инженерия находит широкое практическое применение в отраслях народного хозяйства, таких как микробиологическая промышленность, фармакологическая промышленность, пищевая промышленность и сельское хозяйство.

Слайд 6

Одним из наиболее значимых отраслей в генной инженерии является производство лекарственных препаратов. Современные технологии производства различных лекарств позволяют излечивать тяжелейшие заболевания, или хотя бы замедлять их развитие.

Слайд 7

В основе генной инженерии лежит технология получения рекомбинантной молекулы ДНК.

Слайд 8

Основной единицей наследовательности любого организма является ген. Информация в генах, кодирующих белки, расшифровывается в ходе двух последовательных процессов: транскрипции (синтеза РНК) и трансляции (синтеза белка), которые в свою очередь обеспечивают правильный перевод зашифрованной в ДНК генетической информации с языка нуклеотидов на язык аминокислот.

Слайд 9

С развитием генной инженерии всё чаще стали проводить различные опыты над животными, в результате которых ученые добивались своеобразной мутации организмов. Так, например, компания «Lifestyle Pets» создала с помощью генной инженерии гипоаллергенного кота, названного Ашера ГД. В организм животного был введен некий ген, позволявший «обходить заболевания стороной».

Слайд 11

С помощью генной инженерии исследователи из Университета Пенсильвании представили новый метод производства вакцин: с помощью генетически сконструированных грибов. В результате был ускорен процесс производства вакцин, что может, по мнению пенсильванцев, пригодиться в случае биотеррористической атаки или вспышки птичьего гриппа.

Текст для презентации "Генная инжененрия".

Наши знания по вопросам генетики и молекулярной биологии растут с каждым днем. Это связано прежде всего с работами на микроорганизмах.Термин "генетическая инженерия" можно впослне отнести к селекции, однако возник этот термин только в свзи с появлением возможности проводить прямые манипуляции с индивидуальными генами.

Таким образом, генная инженерия - этосовокупность методов, позволяющихпосредством операций вне организма переносить ген. информацию из одного организма в другой.

В клетках некоторых бактерий, помимо основной большой молекулы ДНК, имеется еще маленькая кольцевая молекула ДНК-плазмида. В генной инженерии празмиды, используемые для введения необходимой информации в клетку-хозяина, называются векторами - переносчиками новых генов. Кроме плазмид роль векторов могут выпонять вирусы и бактериофаги.

Стандартная процедура схематически представлена на рис.

Можно выделиь основные этапы создания генетически модифицированных организмов:

1.Получения гена, кодирующего интересующий признак.

2.Выделение плазмиды из бактериальной клетки. Плазмида расскрытая(разрезанная) ферментом, оставляющим "лпкие концы" - это комплементарные последовательности оснаваний.

3.Обе гена с плазмидой- вектором.

4.Введение рекомбинированной плазмиды в клетку -хозяина.

5. Отбор клеток, получивших дополнительный ген. признак и практическое его использование. Такая новая бактерия будет синтезировать уже новый белок, ее можно выращивать на ферментах и получать биомассу в промышленных мастабах.

Одно из достижений генной инжененрии -это перенос генов, кодирующих синтез инсулина у человека в клетку бактерии. С тех самых пор, как выяснилось, что причиной сахарного диабета является нехватка гормнона инсулина, больным диабетом стали да инсулин, который получали из поджелудочной железы после забоя животных. Инсулин-это белок, и поэтому было много споров о том, можно ли встроить гены этого белка в клетку бактерий и затем выращивать их в промышленных мастабах, чтобы использовать их как боле дешевый и более удобный источник гормнона. В настоящее время удалось перенести гены человеческого инсулина, и уже началось промышленное получение этого гормнона.

Другим важным для человека белком являет интерферон, который обычно образуется в ответ на вирусную инфецию. ген интерферон также удалось перенести в клетку бактерий.

Заглядывая в будущее, можно сказать, что бактерии будут широко применяться как фабрики для производства целого ряда таких продуктов эукариотических клеток, как гормноны, антибиотики, ферменты и вещества, неоходимые в с/х.

Не исклучено, что полезные гены прокариот удастся включить в клетки эукариот. Например ввести гена азотфиксирующих бактерий в клетки полезных с/х растений. Это имео бы чрезвычайно большое значение для производства продукозволило бы резко уменьшить или даже совсем обойтись без внесения в почву нитратных удобрений, на которые расходуются огромные суммы денег и которыми загрязняются близлежайщие реки и озера.

в современной миру генная инженерия используется также для создания модифицированных орагнизмов с эстетическими целями.(этот слайд удалился,но вы сами, если захотите, можете вставить картинки с синими розочками и люминисцентными рыбками).

1 слайд

2 слайд

Историческая справка В 1953 году Дж. Уотсон и Ф. Крик создали двуспиральную модель ДНК, на рубеже 50 – 60-х годов 20 века были выяснены свойства генетического кода. В 1970 году Г.Смитом был впервые выделен ряд ферментов – рестриктаз, пригодных для генно-инженерных целей. Комбинирование ДНК-рестриктаз (для разрезания молекул ДНК на определенные фрагменты) и выделенных еще в 1967 г. ферментов – ДНК-лигаз (для «сшивания» фрагментов в произвольной последовательности) по праву можно считать центральным звеном в технологии генной инженерии. В 1972 году П. Берг, С. Коэн, Х. Бойер создали первую рекомбинантную ДНК. С начала 1980-х гг. достижения генной инженерии начинают использоваться на практике. С 1996 г. генетически модифицированные начинают использоваться в сельском хозяйстве. Уотсон и Крик

3 слайд

Задачи генной инженерии Придание устойчивости к ядохимикатам Придание устойчивости к вредителям и болезням Повышение продуктивности Придание особых качеств

4 слайд

Технология 1. Получение изолированного гена. 2. Введение гена в вектор для встраивания в организм. 3. Перенос вектора с конструкцией в модифицируемый организм-рецепиент. 4. Молекулярное клонирование. 5. Отбор ГМО

5 слайд

Суть технологии заключается в направленном, по заданной программе конструировании молекулярных генетических систем вне организма с последующим внедрением созданных конструкций в живой организм. В результате достигается их включение и активность в данном организме и у его потомства. Возможности генной инженерии – генетическая трансформация, перенос чужеродных генов и других материальных носителей наследственности в клетки растений, животных и микроорганизмов, получение генно-инженерно-модифицированных организмов с новыми уникальными генетическими, биохимическими и физиологическими свойствами и признаками, делают это направление стратегическим. Трансгенная мышь

6 слайд

Практические достижения современной генной инженерии Созданы клонотеки, представляющие собой коллекции клонов бактерий. Каждый из этих клонов содержит фрагменты ДНК определенного организма (дрозофилы, человека и других). На основе трансформированных штаммов вирусов, бактерий и дрожжей осуществляется промышленное производство инсулина, интерферона, гормональных препаратов. На стадии испытаний находится производство белков, позволяющих сохранить свертываемость крови при гемофилии, и других лекарственных препаратов. Созданы трансгенные высшие организмы, в клетках которых успешно функционируют гены совершенно других организмов. Широко известны генетически защищенные генно-модифицированные растения, устойчивые к высоким дозам определенных гербицидов, к вредителям. Среди трансгенных растений лидирующие позиции занимают: соя, кукуруза, хлопок, рапс. Овечка Долли

7 слайд

Эколого-генетические риски ГМ-технологий Генная инженерия относится к технологиям высокого уровня. Высокие биотехнологии характеризуются высокой наукоемкостью. ГМ-технологии используются как в рамках обычного сельскохозяйственного производства, так и в других областях человеческой деятельности: в здравоохранении, в промышленности, в различных областях науки, при планировании и проведении природоохранных мероприятий. Любые технологии высокого уровня могут быть опасными для человека и окружающей его среды, поскольку последствия их применения непредсказуемы. Для снижения вероятности неблагоприятных эколого-генетических последствий применения генно-инженерных технологий постоянно разрабатываются новые подходы. Например, трансгенез (внедрение в геном генетически модифицируемого организма чужеродных генов) в ближайшем будущем может быть вытеснен цисгенезом (внедрение в геном генетически модифицируемого организма генов этого же или близкородственного вида).
























1 из 23

Презентация на тему:

№ слайда 1

Описание слайда:

№ слайда 2

Описание слайда:

Генной инженерия. Что это? Генетическая инженерия (генная инженерия) - совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы.Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, цитология, генетика, микробиология, вирусология.ГЕННАЯ ИНЖЕНЕРИЯ, или технология рекомбинантных ДНК, изменение с помощью биохимических и генетических методик хромосомного материала – основного наследственного вещества клеток. Хромосомный материал состоит из дезоксирибонуклеиновой кислоты (ДНК). Биологи изолируют те или иные участки ДНК, соединяют их в новых комбинациях и переносят из одной клетки в другую. В результате удается осуществить такие изменения генома, которые естественным путем вряд ли могли бы возникнуть.

№ слайда 3

Описание слайда:

История развития и достигнутый уровень технологии Во второй половине ХХ века было сделано несколько важных открытий и изобретений, лежащих в основе генной инженерии. Успешно завершились многолетние попытки «прочитать» ту биологическую информацию, которая «записана» в генах. Эта работа была начата английским учёным Ф. Сенгером и американским учёным У. Гилбертом (Нобелевская премия по химии 1980 г.). Как известно, в генах содержится информация-инструкция для синтеза в организме молекул РНК и белков, в том числе ферментов. Чтобы заставить клетку синтезировать новые, необычные для неё вещества, надо чтобы в ней синтезировались соответствующие наборы ферментов. А для этого необходимо или целенаправленно изменить находящиеся в ней гены, или ввести в неё новые, ранее отсутствовавшие гены. Изменения генов в живых клетках - это мутации. Они происходят под действием, например, мутагенов - химических ядов или излучений. Но такие изменения нельзя контролировать или направлять. Поэтому учёные сосредоточили усилия на попытках разработать методы введения в клетку новых, совершенно определённых генов, нужных человеку.

№ слайда 4

Описание слайда:

Основные этапы решения генноинженерной задачи следующие:1. Получение изолированного гена. 2. Введение гена в вектор для переноса в организм. 3. Перенос вектора с геном в модифицируемый организм. 4. Преобразование клеток организма. 5. Отбор генетически модифицированных организмов (ГМО) и устранение тех, которые не были успешно модифицированы. Процесс синтеза генов в настоящее время разработан очень хорошо и даже в значительной степени автоматизирован. Существуют специальные аппараты, снабжённые ЭВМ, в памяти которых закладывают программы синтеза различных нуклеотидных последовательностей. Такой аппарат синтезирует отрезки ДНК длиной до 100-120 азотистых оснований (олигонуклеотиды). Получила распространение техника, позволяющая использовать для синтеза ДНК, в том числе мутантной, полимеразную цепную реакцию. Термостабильный фермент, ДНК-полимераза, используется в ней для матричного синтеза ДНК, в качестве затравки которого применяют искусственно синтезированные кусочки нуклеиновой кислоты - олигонуклеотиды. Фермент обратная транскриптаза позволяет с использованием таких затравок (праймеров) синтезировать ДНК на матрице выделенной из клеток РНК. Синтезированная таким способом ДНК называется комплементарной (РНК) или кДНК. Изолированный, «химически чистый» ген может быть также получен из фаговой библиотеки. Так называется препарат бактериофага, в геном которого встроены случайные фрагменты из генома или кДНК, воспроизводимые фагом вместе со всей своей ДНК.

№ слайда 5

Описание слайда:

Чтобы встроить ген в вектор, используют ферменты - рестриктазы и лигазы, также являющиеся полезным инструментом генной инженерии. С помощью рестриктаз ген и вектор можно разрезать на кусочки. С помощью лигаз такие кусочки можно «склеивать», соединять в иной комбинации, конструируя новый ген или заключая его в вектор. За открытие рестриктаз Вернер Арбер, Даниел Натанс и Хамилтон Смит также были удостоены Нобелевской премии (1978 г.). Техника введения генов в бактерии была разработана после того, как Фредерик Гриффит открыл явление бактериальной трансформации. В основе этого явления лежит примитивный половой процесс, который у бактерий сопровождается обменом небольшими фрагментами нехромосомной ДНК, плазмидами. Плазмидные технологии легли в основу введения искусственных генов в бактериальные клетки. Значительные трудности были связаны с введением готового гена в наследственный аппарат клеток растений и животных. Однако в природе наблюдаются случаи, когда чужеродная ДНК (вируса или бактериофага) включается в генетический аппарат клетки и с помощью её обменных механизмов начинает синтезировать «свой» белок. Учёные исследовали особенности внедрения чужеродной ДНК и использовали как принцип введения генетического материала в клетку. Такой процесс получил название трансфекция. Если модификации подвергаются одноклеточные организмы или культуры клеток многоклеточных, то на этом этапе начинается клонирование, то есть отбор тех организмов и их потомков (клонов), которые подверглись модификации. Когда же поставлена задача получить многоклеточные организмы, то клетки с изменённым генотипом используют для вегетативного размножения растений или вводят в бластоцисты суррогатной матери, когда речь идёт о животных. В результате рождаются детеныши с изменённым или неизменным генотипом, среди которых отбирают и скрещивают между собой только те, которые проявляют ожидаемые изменения.

№ слайда 6

Описание слайда:

№ слайда 7

Описание слайда:

Полезное влияние генной инженерии Генетическая инженерия служит для получения желаемых качеств изменяемого или генетически модифицированного организма. В отличие от традиционной селекции, в ходе которой генотип подвергается изменениям лишь косвенно, генная инженерия позволяет непосредственно вмешиваться в генетический аппарат, применяя технику молекулярного клонирования. Примерами применения генной инженерии являются получение новых генетически модифицированных сортов зерновых культур, производство человеческого инсулина путем использования генномодифицированных бактерий, производство эритропоэтина в культуре клеток или новых пород экспериментальных мышей для научных исследований.Задача получения таких промышленных штаммов очень важна, для их видоизменения и отбора разработаны многочисленные приёмы активного воздействия на клетку - от обработки сильно действующими ядами до радиоактивного облучения.

№ слайда 8

Описание слайда:

Цель этих приёмов одна - добиться изменения наследственного, генетического аппарата клетки. Их результат - получение многочисленных микробов-мутантов, из сотен и тысяч которых учёные потом стараются отобрать наиболее подходящие для той или иной цели. Создание приёмов химического или радиационного мутагенеза было выдающимся достижением биологии и широко применяется в современной,биотехнологии.Методом генной инженерии получен уже ряд препаратов, в том числе инсулин человека и противовирусный препарат интерферон. И хотя эта технология еще только разрабатывается, она сулит достижение огромных успехов и в медицине, и в сельском хозяйстве. В медицине, например, это весьма перспективный путь создания и производства вакцин. В сельском хозяйстве с помощью рекомбинантной ДНК могут быть получены сорта культурных растений, устойчивые к засухе, холоду, болезням, насекомым-вредителям и гербицидам.

№ слайда 9

Описание слайда:

Практическое применение Теперь умеют уже синтезировать гены, и с помощью таких синтезированных генов, введенных в бактерии, получают ряд веществ, в частности гормоны и интерферон. Их производство составило важную отрасль биотехнологии. Интерферон – белок, синтезируемый организмом в ответ на вирусную инфекцию, изучают сейчас как возможное средство лечения рака и СПИДа. Понадобились бы тысячи литров крови человека, чтобы получить такое количество интерферона, какое дает всего один литр бактериальной культуры. Ясно, что выигрыш от массового производства этого вещества очень велик. Очень важную роль играет также получаемый на основе микробиологического синтеза инсулин, необходимый для лечения диабета. Методами генной инженерии удалось создать и ряд вакцин, которые испытываются сейчас для проверки их эффективности против вызывающего СПИД вируса иммунодефицита человека (ВИЧ). С помощью рекомбинантной ДНК получают в достаточных количествах и человеческий гормон роста, единственное средство лечения редкой детской болезни – гипофизарной карликовости.

№ слайда 10

Описание слайда:

Практическое применение Еще одно перспективное направление в медицине, связанное с рекомбинантной ДНК, – т.н. генная терапия. В этих работах, которые пока еще не вышли из экспериментальной стадии, в организм для борьбы с опухолью вводится сконструированная по методу генной инженерии копия гена, кодирующего мощный противоопухолевый фермент. Генную терапию начали применять также для борьбы с наследственными нарушениями в иммунной системе. В сельском хозяйстве удалось генетически изменить десятки продовольственных и кормовых культур. В животноводстве использование гормона роста, полученного биотехнологическим путем, позволило повысить удои молока; с помощью генетически измененного вируса создана вакцина против герпеса у свиней.

№ слайда 11

Описание слайда:

№ слайда 12

Описание слайда:

Генная инженерия человека В применении к человеку генная инженерия могла бы применяться для лечения наследственных болезней. Однако, технически, есть существенная разница между лечением самого пациента и изменением генома его потомков. В настоящее время эффективные методы изменения генома человека находятся на стадии разработки. Долгое время генетическая инженерия обезьян сталкивалась с серьезными трудостями, однако в 2009 году эксперименты увенчались успехом: дал потомство первый генетически модифицированный примат - игрунка обыкновенная. В этом же году в Nature появилась публикация об успешном исцелении взрослого самца обезъяны от дальтонизма.

№ слайда 13

Описание слайда:

Генная инженерия человека Хотя и в небольшом масштабе, генная инженерия уже используется для того, чтобы дать шанс забеременеть женщинам с некоторыми разновидностями бесплодия. Для этого используют яйцеклетки здоровой женщины. Ребёнок в результате наследует генотип от одного отца и двух матерей. При помощи генной инженерии можно получать потомков с улучшенной внешностью, умственными и физическими способностями, характером и поведением. С помощью генотерапии в будущем возможно улучшение генома и нынеживущих людей. В принципе можно создавать и более серьёзные изменения, но на пути подобных преобразований человечеству необходимо решить множество этических проблем.

№ слайда 14

Описание слайда:

№ слайда 15

Описание слайда:

Научные факторы опасности генной инженерии 1. Генная инженерия в корне отличается от выведения новых сортов и пород. Исскуственное добавление чужеродных генов сильно нарушает точно отрегулированный генетический контроль нормальной клетки. Манипулирование генами коренным образом отличается от комбинирования материнских и отцовских хромосом, которое происходит при естественном скрещивании.2. В настоящее время генная инженерия технически несовершенна, так как она не в состоянии управлять процессом встраивания нового гена. Поэтому невозможно предвидеть место встраивания и эффекты добавленного гена. Даже в том случае, если местоположение гена окажется возможным установить после его встраивания в геном, имеющиеся сведения о ДНК очень неполны для того, чтобы предсказать результаты.

№ слайда 16

Описание слайда:

3. В результате искусственного добавления чужеродного гена непредвиденно могут образоваться опасные вещества. В худшем случае это могут быть токсические вещества, аллергены или другие вредные для здоровья вещества. Сведения о подобного рода возможностях ещё очень неполны. 4. Не существует совершенно надёжных методов проверки на безвредность. Более 10% серьёзных побочных эффектов новых лекарств не возможно выявить несмотря на тщательно проводимые исследования на безвредность. Степень риска того, что опасные свойства новых, модифицированных с помощью генной инженерии продуктов питания, останутся незамеченными, вероятно, значительно больше, чем в случае лекарств. 5. Существующие в настоящее время требования по проверке на безвредность крайне недостаточны. Они совершенно явно составлены таким образом, чтобы упростить процедуру утверждения. Они позволяют использовать крайне нечувствительные методы проверки на безвредность. Поэтому существует значительный риск того, что опасные для здоровья продукты питания смогут пройти проверку незамеченными.

№ слайда 17

Описание слайда:

6. Созданные до настоящего времени с помощью генной инженерии продукты питания не имеют сколько-нибудь значительной ценности для человечества. Эти продукты удовлетворяют, главным образом, лишь коммерческие интересы. 7. Знания о действии на окружающую среду модифицированных с помощью генной инженерии организмов, привнесённых туда, совершенно недостаточны. Не доказано ещё, что модифицированные с помощью генной инженерии организмы не окажут вредного воздействия на окружающую среду. Экологами высказаны предположения о различных потенциальных экологических осложнениях. Например, имеется много возможностей для неконтролируемого распространения потенциально опасных генов, используемых генной инженерией, в том числе передача генов бактериями и вирусами. Осложнения, вызванные в окружающей среде, вероятно, невозможно будет исправить, так как выпущенные гены невозможно взять обратно.

№ слайда 18

Описание слайда:

8. Могут возникнуть новые и опасные вирусы. Экспериментально показано, что встроенные в геном гены вирусов могут соединяться с генами инфекционных вирусов (так называемая рекомбинация). Такие новые вирусы могут быть более агрессивными, чем исходные. Вирусы могут стать также менее видоспецифичными. Например, вирусы растений могут стать вредными для полезных насекомых, животных, а также людей. 9. Знания о наследственном веществе, ДНК, очень неполны. Известно о функции лишь трёх процентов ДНК. рискованно манипулировать сложными системами, знания о которых неполны. Обширный опыт в области биологии, экологии и медицины показывает, что это может вызвать серьёзные непредсказуемые проблемы и расстройства. 10. Генная инженерия не поможет решить проблему голода в мире. Утверждение, что генная инженерия может внести существенный вклад в разрешение проблемы голода в мире, является научно необоснованным мифом.

Описание слайда:

Пищевые добавки - содержат дрожжиФруктовые соки - могут изготовляться их генетических модифицированных фруктовСироп глюкозыМороженое - может содержать сою, сироп глюкозыКукуруза (маис)Макароны (спагетти, вермишель) - могут содержать союКартофельЛегкие напитки - могут содержать сироп глюкозыСоевые бобы, продукты, мясоГазированные Фруктовые напиткиТофуПомидорыДрожжи (закваска)Сахар

№ слайда 21

Описание слайда:

Клонирование животных Овечка Долли, клонированная из клеток вымени другой, мертвой особи, заполонила газеты в 1997 г. Исследователи Университета Рослин (США) раззвонили об успехах, не акцентируя внимание публики на сотнях неудач, которые были до этого. Долли не была первым клоном животного, но была самой знаменитой. В действительности, в мире клонированием животных занимаются уже все последнее десятилетие. В Рослине держали успех в секрете, пока им не удалось запатентовать не только Долли, но и весь процесс ее создания. ВИПО (Всемирная организация по охране интеллектуальной собственности) выдала Университету Рослин эксклюзивные патентные права на клонирование всех животных, не исключая людей, до 2017 года. Успех Долли вдохновил ученых по всему земному шару барахтаться в создательстве и играть в господа Бога, несмотря на негативные последствия для животных и окружающей среды. В Таиланде ученые пытаются клонировать знаменитого белого слона короля Рамы -III, умершего 100 лет назад. Из 50 тыс. диких слонов, живших в 60-х, в Таиланде осталось только 2000. Тайцы хотят возродить стадо. Но вместе с тем не понимают, что если современные антропогенные нарушения и уничтожение местообитаний не прекратится, та же судьба ожидает клоны. Клонирование, как и вся генная инженерия в целом - это жалкая попытка решить проблемы, игнорируя их коренные причины.

№ слайда 22

Описание слайда:

Музеи, вдохновленные фильмами про парк Юрского периода, успехами технологии клонирования в реальном мире, обследуют свои коллекции в поисках образцов ДНК вымерших животных. Существует план попробовать клонировать мамонта, чьи ткани хорошо сохранились в арктических льдах. Вскоре после Долли, Рослин породил Полли - клонированного ягненка, несущего ген человеческого белка в каждой клетке тела. Это рассматривалось как шаг к массовой продукции человеческих белков в животных для лечения таких человеческих болезней как тромбоз. Как и в случае с Долли, особо не афишировался тот факт, что успеху предшествовало множество неудач - в рождении очень крупных детенышей, вдвое больше нормального размера - до 9 кг при норме 4,75 кг. Это не может являться нормой даже в случаях, когда наука о клонировании развивается быстрыми темпами. В 1998 г. исследователи США и Франции сумели клонировать телят голштинской породы из клеток плода. Если раньше процесс создания клона требовал 3 года, то теперь он занимает всего 9 месяцев. С другой стороны, каждый девятый клон был неудачным и умирал или уничтожался. Клонирование - это серьезный риск для здоровья. Исследователи столкнулись со множеством случаев гибели плода, послеродовых смертей, плацентарных абнормальностей, абнормальных отечностей, втрое и вчетверо большую частоту проблем с пуповиной и серьезную иммунологическую недостаточность. У крупных млекопитающих, таких как овцы и коровы, исследователи находят, что примерно половина клонов содержит серьезные нарушения, включая специфические дефекты сердца, легких и других органов, ведущие к перинатальной смертности. Аккумулированные генетические ошибки инфицируют и влияют на поколения клонов. Но ведь невозможно отдать в починку дефектный клон как ломанную машину.